Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2018 Feb 20;16(1):25.
doi: 10.1186/s12916-018-1012-z.

Genomic screening for monogenic forms of diabetes

Affiliations
Comment

Genomic screening for monogenic forms of diabetes

Leslie G Biesecker. BMC Med. .

Abstract

Adult-onset, or type II diabetes mellitus (T2DM) has a complex genetic architecture, from hundreds of genes with low penetrance, common susceptibility variants (e.g., TCF7L2), to a set of more than ten genes that, when mutated, can cause a single-gene or Mendelian form of T2DM (e.g., GCK). It is a clinical challenge to identify patients with the uncommon (2-3%) form of T2DM, typically classified as maturity-onset diabetes of the young (MODY). Bansal et al. (BMC Med 15:213, 2017) used a gene panel test approach to test patients with diabetes for single-gene causes of MODY. They found that nearly 2% of younger patients had pathogenic variants in one of seven genes. These data confirm prior studies showing that Mendelian or single-gene MODY can masquerade as garden variety T2DM. The implications of these results for wider general medicine and the future implementation of clinical genome sequencing are discussed.Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0977-3.

Keywords: Gene panel testing; Genome sequencing; Maturity-onset diabetes of the young; Type 2 diabetes mellitus.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

LGB is an uncompensated advisor to Illumina, receives royalties from Genentech Corp, and honoraria from Wiley–Blackwell.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Comment on

References

    1. Wang X, Strizich G, Hu Y, Wang T, Kaplan RC, Qi Q. Genetic markers of type 2 diabetes: progress in genome-wide association studies and clinical application for risk prediction. J Diabetes. 2016;8:24–35. doi: 10.1111/1753-0407.12323. - DOI - PubMed
    1. Szabo M, Mate B, Csep K, Benedek T. Genetic approaches to the study of gene variants and their impact on the pathophysiology of type 2 diabetes. Biochem Genet. 2017; - PubMed
    1. Dracopoli NC, Haines JL. Genotyping. Current protocols in human genetics. New York: Wiley–Blackwell; 2010. pp. 2.0.1–2.0.3.
    1. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–558. doi: 10.1038/nrg3523. - DOI - PubMed
    1. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53:2504–2508. doi: 10.1007/s00125-010-1799-4. - DOI - PubMed

Supplementary concepts