Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 5:9:165.
doi: 10.3389/fimmu.2018.00165. eCollection 2018.

Staphylococcal Protein A Is a Key Factor in Neutrophil Extracellular Traps Formation

Affiliations

Staphylococcal Protein A Is a Key Factor in Neutrophil Extracellular Traps Formation

Tamara Hoppenbrouwers et al. Front Immunol. .

Abstract

Staphylococcus aureus are strong inducers of neutrophil extracellular traps (NETs), a defense mechanism of neutrophils against pathogens. Our aim was to explore the role of Protein A in S. aureus-induced NETosis. We determined the Protein A production of four different S. aureus strains and found a direct relationship between the degree of NETosis induction and Protein A production: strains producing higher concentrations of Protein A evoke significantly more NETs. A S. aureus strain in which Protein A as well as a second binding protein for immunoglobulins (Sbi) have been knocked-out (ΔSpA ΔSbi) induced significantly less NETosis than the wild-type strain. NETosis induction by this knockout strain can be rescued by the addition of purified Protein A. Dead S. aureus did not induce NETosis. In conclusion, Protein A is a determinant for NETosis induction by S. aureus.

Keywords: NETs; Protein A; S. aureus; SpA; Staphylococcus aureus; neutrophil extracellular traps.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Protein A production by Staphylococcus aureus. (A) Protein A secretion is higher in S. aureus strains Newman and USA300 compared to S. aureus strains M116 and RN6390, as determined by an ELISA assay (n = 5). (B) More Protein A is bound to the surface of S. aureus strains Newman and USA300 compared to S. aureus strains M116 and RN6390, as determined by FACS (n = 3). (C) Amount of Protein A bound to the surface of S. aureus measured on 2.5, 3.5, and 24 h as determined by FACS. Except for strain RN6390, the amount of surface bound Protein A is increasing over time (n = 3, neutrophils derived from three individual donors).
Figure 2
Figure 2
Neutrophil extracellular traps (NETs) induction by different Staphylococcus aureus strains Newman, USA300, M116, and RN6390. (A) In vitro NETs formation as indicated by propidium iodide (red). (B) Strains Newman and USA300 induce significantly more NETs than M116 and RN6390, as indicated by percentage of NETs coverage in the total volume. Results of three separate experiments, neutrophils were derived from three individual donors (*p < 0.05; **p < 0.01; ***p < 0.001).
Figure 3
Figure 3
Reversed effect of significantly reduced NETosis by Staphylococcus aureus knockout strain after the addition of purified Protein A. Except for S. aureus Newman ΔSpAΔSbi, all conditions induce more NETosis than Protein A only. Results of three separate experiments, neutrophils were derived from three individual donors. * indicates significant difference from S. aureus Newman ΔSpAΔSbi. # indicates significant difference when compared to neutrophils stimulated with 0.9 µg/ml Protein A (*/#p < 0.05; **/##p < 0.01; ***/###p < 0.001).
Figure 4
Figure 4
The effect of live and dead Staphylococcus aureus and the presence of Protein A (both produced by S. aureus and added) on NETosis in different rescue experiments.
Figure 5
Figure 5
The effect of Protein A on dead bacteria in the presence of neutrophils after 40 min of incubation. (A) Dead Staphylococcus aureus Newman incubated with neutrophils. Arrows indicate phagocytosis. (B) Dead S. aureus Newman incubated with 0.9 µg/ml Protein A and neutrophils. Blue, DNA; red, dead bacteria.

Similar articles

Cited by

References

    1. Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol (2013) 35:513–30.10.1007/s00281-013-0384-6 - DOI - PMC - PubMed
    1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science (2004) 303:1532–5.10.1126/science.1092385 - DOI - PubMed
    1. van Wamel WJ. Staphylococcus aureus infections, some second thoughts. Curr Opin Infect Dis (2017) 30(3):303–8.10.1097/QCO.0000000000000366 - DOI - PubMed
    1. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A (2010) 107:15880–5.10.1073/pnas.1005743107 - DOI - PMC - PubMed
    1. Varju I, Longstaff C, Szabo L, Farkas AZ, Varga-Szabo VJ, Tanka-Salamon A, et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost (2015) 113:1289–98.10.1160/TH14-08-0669 - DOI - PubMed

LinkOut - more resources