Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;100(3):765-72.
doi: 10.1093/oxfordjournals.jbchem.a121769.

Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle: effects of Sr2+ and Cd2+ on Ca2+ uptake and formation of the phosphorylated intermediate of the Ca2+,Mg2+-ATPase

Free article

Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle: effects of Sr2+ and Cd2+ on Ca2+ uptake and formation of the phosphorylated intermediate of the Ca2+,Mg2+-ATPase

M Sumida et al. J Biochem. 1986 Sep.
Free article

Abstract

The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.

PubMed Disclaimer

Similar articles

Cited by

Publication types