Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr;15(4):335-349.
doi: 10.1080/17425247.2018.1444601. Epub 2018 Mar 1.

Selective drug delivery approaches to lesioned brain through blood brain barrier disruption

Affiliations
Free article
Review

Selective drug delivery approaches to lesioned brain through blood brain barrier disruption

Zahraa S Al-Ahmady. Expert Opin Drug Deliv. 2018 Apr.
Free article

Abstract

Introduction: The development of therapeutics for central nervous system (CNS) disorders is still considered a challenging area in drug development due to insufficient translocation through the blood-brain barrier (BBB). Under normal conditions, BBB restrict the penetration of more than 98% of blood-borne molecules including drugs to the CNS. However, recent research findings have proven that the nature of the BBB is altered in several neurological conditions. This complexity encourages revisiting drug delivery strategies to the CNS as this can give a wide range of opportunities for CNS drug development.

Areas covered: This review focuses on nanotechnology-based drug delivery platforms designed for selective recruitment into the lesioned brain by taking advantages of BBB disruption that is associated with certain neurological conditions.

Expert opinion: Current CNS therapeutic strategies do not fully address the pathophysiological adaptation of BBB in their design. The lack of selective delivery to the brain lesions has been the culprit behind the failure of many CNS therapeutics. This highlighted the need for smart designs of advanced drug delivery systems that take advantage of BBB structural changes in CNS diseases. Recently, promising examples have been reported in this area, however, more work is still required beyond the preclinical testing.

Keywords: Blood-brain barrier; lesioned brain; nanomedicine; nanoparticles-based drug delivery.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources