Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec 1;137(11):3378-82.

Heteroantibody-mediated cytotoxicity: antibody to the high affinity Fc receptor for IgG mediates cytotoxicity by human monocytes that is enhanced by interferon-gamma and is not blocked by human IgG

  • PMID: 2946759

Heteroantibody-mediated cytotoxicity: antibody to the high affinity Fc receptor for IgG mediates cytotoxicity by human monocytes that is enhanced by interferon-gamma and is not blocked by human IgG

L Shen et al. J Immunol. .

Abstract

An IgG1 monoclonal antibody, 32.2, raised against the 72,000 dalton monocyte high affinity Fc receptor, was used to examine the role of this receptor in ADCC. This antibody did not inhibit the binding of human IgG1 to monocytes or to the U937 cell line, nor did it block or stimulate their killing of IgG-coated chicken erythrocytes (CE). Whole 32.2 or its Fab fragments were cross-linked to Fab fragments of rabbit anti-CE by using the agent SPDP. The resulting heteroantibodies (32.2 X Fab anti-CE) mediated monocyte and U937 cytotoxicity against CE, whereas an anti-HLA X anti-CE reagent did not. Both FcR expression and heteroantibody-mediated cytotoxicity were increased by culturing monocytes or U937 with IFN-gamma. Although IgG-mediated ADCC was significantly inhibited by 40 micrograms/ml human IgG1, cytotoxicity mediated by 32.2 X Fab anti-CE was not blocked by 2 mg/ml human IgG1, suggesting that such cytotoxicity might not be blocked by IgG in vivo. These data indicate the potential of 32.2 heteroantibodies in analysis of FcR function and in therapy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources