[Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]
- PMID: 29469251
- DOI: 10.16250/j.32.1374.2016089
[Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]
Abstract
Objective: To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population.
Methods: The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared.
Results: Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively.
Conclusions: The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.
[摘要]目的 探讨ARIMA-NARNN组合模型预测血吸虫感染率的有效性。 方法 利用2005年1月至2015年2月江 苏省血吸虫感染率资料分别建立ARIMA模型、NARNN模型和ARIMA-NARNN组合模型, 比较各模型的拟合和预测效 果。 结果 相比较ARIMA模型和NARNN模型, ARIMA-NARNN组合模型预测样本的MSE、MAE和MAPE均最小, 分别 为0.011 1、0.090 0和0.282 4。 结论 ARIMA-NARNN组合模型能有效模拟和预测血吸虫感染率, 具有较好的推广应用 价值。.
Keywords: Autoregressive integrated moving average model (ARIMA); Nonlinear auto - regressive neural network (NARNN); Prediction; Schistosomiasis; Time series.
Similar articles
-
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.Int J Environ Res Public Health. 2016 Mar 23;13(4):355. doi: 10.3390/ijerph13040355. Int J Environ Res Public Health. 2016. PMID: 27023573 Free PMC article.
-
Time series model for forecasting the number of new admission inpatients.BMC Med Inform Decis Mak. 2018 Jun 15;18(1):39. doi: 10.1186/s12911-018-0616-8. BMC Med Inform Decis Mak. 2018. PMID: 29907102 Free PMC article.
-
A hybrid model for predicting the prevalence of schistosomiasis in humans of Qianjiang City, China.PLoS One. 2014 Aug 13;9(8):e104875. doi: 10.1371/journal.pone.0104875. eCollection 2014. PLoS One. 2014. PMID: 25119882 Free PMC article.
-
Autoregressive models in environmental forecasting time series: a theoretical and application review.Environ Sci Pollut Res Int. 2023 Feb;30(8):19617-19641. doi: 10.1007/s11356-023-25148-9. Epub 2023 Jan 17. Environ Sci Pollut Res Int. 2023. PMID: 36648728 Free PMC article. Review.
-
Forecasting tuberculosis incidence: a review of time series and machine learning models for prediction and eradication strategies.Int J Environ Health Res. 2024 Jun 25:1-16. doi: 10.1080/09603123.2024.2368137. Online ahead of print. Int J Environ Health Res. 2024. PMID: 38916208 Review.