Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 5;499(2):112-119.
doi: 10.1016/j.bbrc.2018.02.150. Epub 2018 Feb 19.

RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: Dependent on AMPK pathway

Affiliations

RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: Dependent on AMPK pathway

Zai-Ming Liu et al. Biochem Biophys Res Commun. .

Abstract

Traumatic brain injury (TBI) is a leading cause of disability and mortality in young adults worldwide. The pathophysiology is not fully understood. Programmed necrosis (necroptosis) is a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Receptor-interacting protein 3 (RIP3) plays an important role in programmed necrosis. However, the effect of RIP3-related pathway in TBI is little to be known. We attempted to explore the significance of RIP3 in regulating TBI in vivo. Significantly, TBI induced over-expression of RIP3 in the hippocampus of mice, as well as RIP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL). Mice after TBI exhibited cognitive dysfunction and activation of glia cells, which were significantly attenuated by RIP3-knockout (KO). Moreover, inflammation and oxidative stress in hippocampus were markedly induced by TBI in wild type (WT) mice. Of note, the reduction of pro-inflammatory cytokines and oxidants was observed in RIP3-deficient mice, which was linked to the blockage of NLR pyrin domain containing 3 (NLRP3)/apoptosis-associated speck-like protein containing a CARD (ASC)/Caspase-1 and kelch-like ECH-associated protein 1 (Keap 1) pathways. Further, TBI induced hippocampus apoptosis, evidenced by the increase of cleaved Caspase-8/-3 and poly (ADP)-ribose polymerase (PARP) in WT mice, whereas being decreased by RIP3-knockout. In addition, RIP3 knockout led to phosphorylation of AMP-activated protein kinase α (AMPKα) in hippocampus of mice after TBI. And of note, the in vitro findings indicated that RIP3-ablation attenuated oxidative stress, inflammation and apoptosis in astrocytes, which was dependent on AMPKα activation. Together, suppressing RIP3 might be served as a therapeutic target against brain injury through inhibiting inflammation, oxidative stress and apoptosis.

Keywords: Apoptosis; Inflammation; Oxidative stress; RIP3; Traumatic brain injury.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources