Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 25:8:733.
doi: 10.3389/fneur.2017.00733. eCollection 2017.

Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke-Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial

Affiliations

Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke-Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial

Susan M Hunter et al. Front Neurol. .

Abstract

Background: Variation in physiological deficits underlying upper limb paresis after stroke could influence how people recover and to which physical therapy they best respond.

Objectives: To determine whether functional strength training (FST) improves upper limb recovery more than movement performance therapy (MPT). To identify: (a) neural correlates of response and (b) whether pre-intervention neural characteristics predict response.

Design: Explanatory investigations within a randomised, controlled, observer-blind, and multicentre trial. Randomisation was computer-generated and concealed by an independent facility until baseline measures were completed. Primary time point was outcome, after the 6-week intervention phase. Follow-up was at 6 months after stroke.

Participants: With some voluntary muscle contraction in the paretic upper limb, not full dexterity, when recruited up to 60 days after an anterior cerebral circulation territory stroke.

Interventions: Conventional physical therapy (CPT) plus either MPT or FST for up to 90 min-a-day, 5 days-a-week for 6 weeks. FST was "hands-off" progressive resistive exercise cemented into functional task training. MPT was "hands-on" sensory/facilitation techniques for smooth and accurate movement.

Outcomes: The primary efficacy measure was the Action Research Arm Test (ARAT). Neural measures: fractional anisotropy (FA) corpus callosum midline; asymmetry of corticospinal tracts FA; and resting motor threshold (RMT) of motor-evoked potentials.

Analysis: Covariance models tested ARAT change from baseline. At outcome: correlation coefficients assessed relationship between change in ARAT and neural measures; an interaction term assessed whether baseline neural characteristics predicted response.

Results: 288 Participants had: mean age of 72.2 (SD 12.5) years and mean ARAT 25.5 (18.2). For 240 participants with ARAT at baseline and outcome the mean change was 9.70 (11.72) for FST + CPT and 7.90 (9.18) for MPT + CPT, which did not differ statistically (p = 0.298). Correlations between ARAT change scores and baseline neural values were between 0.199, p = 0.320 for MPT + CPT RMT (n = 27) and -0.147, p = 0.385 for asymmetry of corticospinal tracts FA (n = 37). Interaction effects between neural values and ARAT change between baseline and outcome were not statistically significant.

Conclusions: There was no significant difference in upper limb improvement between FST and MPT. Baseline neural measures did not correlate with upper limb recovery or predict therapy response.

Trial registration: Current Controlled Trials: ISRCT 19090862, http://www.controlled-trials.com.

Keywords: magnetic resonance imaging; physical therapy; rehabilitation; stroke; transcranial magnetic stimulation; upper limb; prediction.

PubMed Disclaimer

Figures

Figure 1
Figure 1
All centres: CONSORT 2010 flow diagram.
Figure 2
Figure 2
Association between dose (hours) of therapy and response to therapy as measured by change in Action Research Arm Test (ARAT) score from baseline to outcome. Pearson correlation coefficients for: FST + CPT group (n = 101) r = 0.154, p = 0.123; MPT + CPT group (n = 103) r = ?0.055, p = 0.581; and for all participants (n = 204) r = 0.071, p = 0.311.

References

    1. Pollock A, St George B, Fenton M, Firkins L. Top ten research priorities relating to life after stroke. Lancet Neurol (2012) 11:209. 10.1016/S1474-4422(12)70029-7 - DOI - PubMed
    1. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of cute stroke impairments and disability in a multiethnic population. Stroke (2001) 32:1279–84. 10.1161/01.STR.32.6.1279 - DOI - PubMed
    1. Veerbeek JM, Kwakkel G, van Wegen EEH, Ket JCF, Heymans MW. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke (2011) 42:1482–8. 10.1161/STROKEAHA.110.604090 - DOI - PubMed
    1. Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, et al. Physical rehabilitation approaches for recovery of function and mobility following stroke. Cochrane Database Syst Rev (2014) 4:CD001920. 10.1002/14651858.CD001920.pub3 - DOI - PMC - PubMed
    1. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJH. Probability of regaining dexterity in the flaccid upper limb. Stroke (2003) 34:2181–6. 10.1161/01.STR.0000087172.16305.CD - DOI - PubMed

LinkOut - more resources