Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;12(4):1061-1071.
doi: 10.1038/s41396-018-0079-z. Epub 2018 Feb 23.

Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system

Affiliations

Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system

Ilonka C Engelhardt et al. ISME J. 2018 Apr.

Abstract

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Dynamics of soil water content in the experimental treatments (infrequent and frequent water input, dotted and full curves, respectively) over the duration of the experiment. Lines and shaded polygons around them indicate mean ± standard error (n = 5)
Fig. 2
Fig. 2
Root biomass after 12 weeks under contrasting precipitation pattern treatments (open bars: infrequent water input, closed bars: frequent water input), in three soil depth layers (top: 0–5 cm, middle: 10–15 cm, bottom: 30–35 cm). Bars indicate mean ± standard error (n = 5). Significance between treatments in each layer: * 0.05>p>0.01, ** 0.01>p>0.001, *** 0.001>p.
Fig. 3
Fig. 3
Principal coordinates analysis (PCoA) of the UniFrac pairwise dissimilarity of the relative abundance of bacterial sequences based on 16S rRNA gene a and of the Bray–Curtis distance of the relative abundance of fungal sequences based on ITS rRNA region b. The active (red symbols) and the inactive (blue symbols) communities were determined in the infrequent (open symbols) and frequent (closed symbols) water input treatments, in three soil depth layers (top: 0–5 cm, triangles; middle: 10–15 cm, squares, bottom: 30–35 cm, circles)
Fig. 4
Fig. 4
Bacterial a and fungal b observed species richness and evenness (determined by the Simpson reciprocal index) in the active (red symbols) and inactive (blue symbols) communities at three soil depths (top: 0–5 cm, triangles; middle: 10–15 cm, squares, bottom: 30–35 cm, circles). Bars indicate mean ± standard error
Fig. 5
Fig. 5
Relative abundance of the OTUs that responded significantly to soil depth in the active a and inactive b bacterial communities (phylum assignment provided, class provided for Proteobacteria). Based on their relative abundance, the OTUs clustered by top and bottom groups
Fig. 6
Fig. 6
Relative abundance of the OTUs that responded significantly to soil depth in the active a and inactive b fungal community (order provided). Based on their relative abundance, the OTUs clustered by top and bottom groups

References

    1. IPCC. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2007.
    1. Sowerby A, Emmett BA, Tietema A, Beier C. Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob Change Biol. 2008;14:2388–404. doi: 10.1111/j.1365-2486.2008.01643.x. - DOI
    1. Ruehr NK, Offerman C, Gessler A, Winkler BJ, Ferrio JP, Buchmann N, et al. Effects of drought on allocation of recent carbon: from beech leaves to soil respiration. New Phytol. 2009;184:950–61. doi: 10.1111/j.1469-8137.2009.03044.x. - DOI - PubMed
    1. Bloor JMG, Bardgett RD. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst. 2012;14:193–204. doi: 10.1016/j.ppees.2011.12.001. - DOI
    1. Hartmann AA, Niklaus PA. Effects of simulated drought and nitrogen fertilizer on plant productivity and nitrous oxide (N2O) emissions of two pastures. Plant Soil. 2012;361:411–26. doi: 10.1007/s11104-012-1248-x. - DOI

Publication types