Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 25;541(1-2):117-135.
doi: 10.1016/j.ijpharm.2018.02.038. Epub 2018 Feb 21.

Lipid-based nanosuspensions for oral delivery of peptides, a critical review

Affiliations
Review

Lipid-based nanosuspensions for oral delivery of peptides, a critical review

Camille Dumont et al. Int J Pharm. .

Abstract

Peptides are therapeutic molecules that can treat selectively and efficiently a wide range of pathologies. However, their intrinsic properties cause their rapid degradation in the human gastrointestinal (GI) tract resulting in poor bioavailability after oral administration. Yet, their encapsulation in nanocarriers offers them protection from this harsh environment and increases their permeability across the epithelium border. In particular, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) have proven to improve peptide oral bioavailability. This article details different techniques used to produce SLN and NLC with potential or effective peptide encapsulation. Basic principles of covalent and non-covalent lipidization are described and discussed as a prerequisite to improve hydrophilic peptide encapsulation in lipid-based nanosuspensions. The last part of this review provides the key evaluation techniques to assay SLN and NLC for peptide oral bioavailability enhancement. Methods to assess the protective effects of the carriers are described as well as the techniques to evaluate peptide release upon lipid digestion by lipases. Furthermore, this review suggests different techniques to measure permeability improvements and describes the main in vitro cell models associated.

Keywords: Lipid; Lipidization; Peptide; Permeation; Process; SLN.

PubMed Disclaimer

Similar articles

Cited by