Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 13:672:90-95.
doi: 10.1016/j.neulet.2018.02.044. Epub 2018 Feb 21.

The pedunculopontine and laterodorsal tegmental nuclei in the kainate model of epilepsy

Affiliations

The pedunculopontine and laterodorsal tegmental nuclei in the kainate model of epilepsy

Joana I Soares et al. Neurosci Lett. .

Abstract

Prior studies showed that epilepsy can be associated with reorganization of the septohippocampal cholinergic fiber system. Using the kainate model of epilepsy, we wished to further examine the structural integrity of the mesopontine tegmental nuclei (pedunculopontine, PPN, and laterodorsal, LDT), which provide the cholinergic input to the thalamus. It was found that the total numbers of the PPN and LDT cells immunoreactive to the vesicular acetylcholine transporter did not differ between control and epileptic rats. However, the cholinergic cells had enlarged perikarya in epileptic rats. We further examined the effects of epilepsy on the distribution pattern of cholinergic fiber varicosities in the parafascicular nucleus, one of the principal thalamic targets of PPN projections. The density of cholinergic varicosities, represented by two distinct populations, was increased in epileptic rats. These data provide the first morphological evidence for structural alterations in mesopontine cholinergic neurons in experimental epilepsy. They suggest dysfunctional cholinergic transmission in the brainstem-thalamic pathway, which may partly account for various epilepsy-related neurological disturbances.

Keywords: Mesopontine tegmental nuclei; Parafascicular nucleus; Stereology; Vesicular acetylcholine transporter protein.

PubMed Disclaimer

Publication types