Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications
- PMID: 29478411
- PMCID: PMC6251479
- DOI: 10.1186/s13059-018-1406-4
Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications
Abstract
Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.
Keywords: Differential expression; Single-cell RNA sequencing; Weights; Zero-inflated negative binomial.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures






Similar articles
-
Differential expression of single-cell RNA-seq data using Tweedie models.Stat Med. 2022 Aug 15;41(18):3492-3510. doi: 10.1002/sim.9430. Epub 2022 Jun 2. Stat Med. 2022. PMID: 35656596 Free PMC article.
-
A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.Genes (Basel). 2021 Dec 2;12(12):1947. doi: 10.3390/genes12121947. Genes (Basel). 2021. PMID: 34946896 Free PMC article.
-
Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.Comput Biol Chem. 2022 Oct;100:107733. doi: 10.1016/j.compbiolchem.2022.107733. Epub 2022 Jul 18. Comput Biol Chem. 2022. PMID: 35926443
-
Machine learning and statistical methods for clustering single-cell RNA-sequencing data.Brief Bioinform. 2020 Jul 15;21(4):1209-1223. doi: 10.1093/bib/bbz063. Brief Bioinform. 2020. PMID: 31243426 Review.
-
Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research.Methods Mol Biol. 2022;2413:245-255. doi: 10.1007/978-1-0716-1896-7_23. Methods Mol Biol. 2022. PMID: 35044670 Review.
Cited by
-
Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy.Nature. 2021 May;593(7858):255-260. doi: 10.1038/s41586-021-03489-0. Epub 2021 Apr 28. Nature. 2021. PMID: 33911285 Free PMC article.
-
A benchmark study of simulation methods for single-cell RNA sequencing data.Nat Commun. 2021 Nov 25;12(1):6911. doi: 10.1038/s41467-021-27130-w. Nat Commun. 2021. PMID: 34824223 Free PMC article.
-
A decade of advances in transposon-insertion sequencing.Nat Rev Genet. 2020 Sep;21(9):526-540. doi: 10.1038/s41576-020-0244-x. Epub 2020 Jun 12. Nat Rev Genet. 2020. PMID: 32533119 Free PMC article. Review.
-
Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance.PLoS One. 2022 Mar 14;17(3):e0264978. doi: 10.1371/journal.pone.0264978. eCollection 2022. PLoS One. 2022. PMID: 35286314 Free PMC article.
-
Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes.J Exp Med. 2020 May 4;217(5):e20191388. doi: 10.1084/jem.20191388. J Exp Med. 2020. PMID: 32302378 Free PMC article.
References
-
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. http://genomebiology.com/2014/15/12/550. - PMC - PubMed
-
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–40. http://www.ncbi.nlm.nih.gov/pubmed/19910308. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2796818. - PMC - PubMed
-
- Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):R29. http://www.pubmedcentral.nih.gov/articlerender.fcgi%3Fartid=4053721%26to.... - PMC - PubMed
-
- Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57–63. http://www.nature.com/doifinder/10.1038/nrg2484. - DOI - PMC - PubMed
-
- Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333–51. http://www.nature.com/doifinder/10.1038/nrg.2016.49. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources