Electrokinetic analyses in biofilm anodes: Ohmic conduction of extracellular electron transfer
- PMID: 29478785
- DOI: 10.1016/j.biortech.2018.02.002
Electrokinetic analyses in biofilm anodes: Ohmic conduction of extracellular electron transfer
Abstract
This review explores electron transfer kinetics from an electron donor to the anode in electrically conductive biofilm anodes. Intracellular electron transfer (IET) from the donor to the anode is well described with the Monod equation. In comparison, mechanisms of extracellular electron transfer (EET) conduction are unclear yet, complicating EET kinetics. However, in biofilm anodes where potential gradient to saturated current density is less than ∼300 mV, Ohmic conduction successfully describe conductive EET mainly with biofilm conductivity (Kbio) and biofilm thickness (Lf). High Kbio essential for production of high current density is found in Geobacter pure or enriched biofilm anodes, but other exoelectrogens could make biofilms electrically conductive. IET is rate-limiting for current density in conductive biofilms, and biofilm density of active exoelectrogens and Lf are operating parameters that can be optimized further to improve current density.
Keywords: Biofilm conductivity; Biofilm density; Biofilm thickness; Electron transfer; Ohmic conduction.
Copyright © 2018 Elsevier Ltd. All rights reserved.
Similar articles
-
The Roles of Biofilm Conductivity and Donor Substrate Kinetics in a Mixed-Culture Biofilm Anode.Environ Sci Technol. 2016 Dec 6;50(23):12799-12807. doi: 10.1021/acs.est.6b04168. Epub 2016 Nov 15. Environ Sci Technol. 2016. PMID: 27797183 Free PMC article.
-
High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm.ChemSusChem. 2016 Dec 20;9(24):3485-3491. doi: 10.1002/cssc.201601007. Epub 2016 Nov 21. ChemSusChem. 2016. PMID: 27870324 Free PMC article.
-
Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles.Biosens Bioelectron. 2018 Jun 15;108:20-26. doi: 10.1016/j.bios.2018.02.030. Epub 2018 Feb 12. Biosens Bioelectron. 2018. PMID: 29494884
-
Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.Bioresour Technol. 2022 Nov;363:127934. doi: 10.1016/j.biortech.2022.127934. Epub 2022 Sep 12. Bioresour Technol. 2022. PMID: 36100184 Review.
-
A kinetic perspective on extracellular electron transfer by anode-respiring bacteria.FEMS Microbiol Rev. 2010 Jan;34(1):3-17. doi: 10.1111/j.1574-6976.2009.00191.x. FEMS Microbiol Rev. 2010. PMID: 19895647 Review.
Cited by
-
Imidazolium-based ionic liquids support biosimilar flavin electron transfer.Mater Adv. 2024 Aug 6;5(17):6813-6819. doi: 10.1039/d4ma00558a. eCollection 2024 Aug 27. Mater Adv. 2024. PMID: 39206000 Free PMC article.
-
Characterization of spatiotemporal electroactive anodic biofilm activity distribution using 1D simulations.Sci Rep. 2022 Apr 7;12(1):5849. doi: 10.1038/s41598-022-09596-w. Sci Rep. 2022. PMID: 35393459 Free PMC article.
-
Hydrogen peroxide production in a pilot-scale microbial electrolysis cell.Biotechnol Rep (Amst). 2018 Aug 1;19:e00276. doi: 10.1016/j.btre.2018.e00276. eCollection 2018 Sep. Biotechnol Rep (Amst). 2018. PMID: 30197872 Free PMC article.
-
Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films.Nanomaterials (Basel). 2019 Dec 15;9(12):1783. doi: 10.3390/nano9121783. Nanomaterials (Basel). 2019. PMID: 31847505 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources