Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 2;29(7):564-569.
doi: 10.1097/WNR.0000000000000989.

Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice

Affiliations

Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice

Yu-Ying Shang et al. Neuroreport. .

Abstract

Synapse dysfunction is an early hallmark of Alzheimer's disease (AD), and was considered to be closely related to memory loss. The molecular mechanisms that trigger synapse loss and dysfunction remain poorly understood. Increasing evidence shows a link between Rho GTPases and synapse plasticity. Rho GTPases play a role in controlling synapse function by regulating actin cytoskeleton and dendritic spines. Observations have suggested that phytochemicals, such as flavonoids, alleviate cognition impairment in AD. However, to date, the link between the protective effect of flavonoids on AD and the activity of Rho GTPases remains uninvestigated. In this study, APP/PS1 mice were used as an AD model, and we found that synapse loss occurred in AD mice brain. Flavonoids extracted from leaves of Diospyros kaki (FLDK) were used to investigate whether its protective effects on synapse were related to Rho GTPases activity in AD mice. The Rho GTPases Activation Kit showed that Ras homologous member A (RhoA)-GTP was significantly higher and Ras-related C3 botulinum toxin substrate 1 (Rac1)-GTP was significantly lower in APP/PS1 mice than in normal mice, and RhoA-GTP activity was significantly inhibited by FLDK. We also found that FLDK improved learning and memory function, and antagonized the downregulation expressions of synapse-related proteins such as synaptophysin and drebrin. These findings suggest that FLDK is a potential therapeutic agent for AD, and modulation of Rho GTPases activity might contribute toward its protective effect.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms