Suboptimality in perceptual decision making
- PMID: 29485020
- PMCID: PMC6110994
- DOI: 10.1017/S0140525X18000936
Suboptimality in perceptual decision making
Abstract
Human perceptual decisions are often described as optimal. Critics of this view have argued that claims of optimality are overly flexible and lack explanatory power. Meanwhile, advocates for optimality have countered that such criticisms single out a few selected papers. To elucidate the issue of optimality in perceptual decision making, we review the extensive literature on suboptimal performance in perceptual tasks. We discuss eight different classes of suboptimal perceptual decisions, including improper placement, maintenance, and adjustment of perceptual criteria; inadequate tradeoff between speed and accuracy; inappropriate confidence ratings; misweightings in cue combination; and findings related to various perceptual illusions and biases. In addition, we discuss conceptual shortcomings of a focus on optimality, such as definitional difficulties and the limited value of optimality claims in and of themselves. We therefore advocate that the field drop its emphasis on whether observed behavior is optimal and instead concentrate on building and testing detailed observer models that explain behavior across a wide range of tasks. To facilitate this transition, we compile the proposed hypotheses regarding the origins of suboptimal perceptual decisions reviewed here. We argue that verifying, rejecting, and expanding these explanations for suboptimal behavior - rather than assessing optimality per se - should be among the major goals of the science of perceptual decision making.
Keywords: Bayesian decision theory; cue combination; modeling; optimality; perceptual decision making; suboptimality; uncertainty; vision.
Figures









Comment in
-
Supra-optimality may emanate from suboptimality, and hence optimality is no benchmark in multisensory integration.Behav Brain Sci. 2018 Jan;41:e239. doi: 10.1017/S0140525X18001280. Behav Brain Sci. 2018. PMID: 30767790
-
The world is complex, not just noisy.Behav Brain Sci. 2018 Jan;41:e227. doi: 10.1017/S0140525X18001292. Behav Brain Sci. 2018. PMID: 30767791
-
Satisficing as an alternative to optimality and suboptimality in perceptual decision making.Behav Brain Sci. 2018 Jan;41:e235. doi: 10.1017/S0140525X18001358. Behav Brain Sci. 2018. PMID: 30767793
-
Descending Marr's levels: Standard observers are no panacea.Behav Brain Sci. 2018 Jan;41:e249. doi: 10.1017/S0140525X18001413. Behav Brain Sci. 2018. PMID: 30767794
-
How did that individual make that perceptual decision?Behav Brain Sci. 2018 Jan;41:e226. doi: 10.1017/S0140525X1800153X. Behav Brain Sci. 2018. PMID: 30767795
-
Excess of individual variability of priors prevents successful development of general models.Behav Brain Sci. 2018 Jan;41:e224. doi: 10.1017/S0140525X18001310. Behav Brain Sci. 2018. PMID: 30767796
-
The standard Bayesian model is normatively invalid for biological brains.Behav Brain Sci. 2018 Jan;41:e237. doi: 10.1017/S0140525X18001449. Behav Brain Sci. 2018. PMID: 30767797
-
Inclusion of neural effort in cost function can explain perceptual decision suboptimality.Behav Brain Sci. 2018 Jan;41:e242. doi: 10.1017/S0140525X18001309. Behav Brain Sci. 2018. PMID: 30767798
-
LPCD framework: Analytical tool or psychological model?Behav Brain Sci. 2018 Jan;41:e230. doi: 10.1017/S0140525X18001383. Behav Brain Sci. 2018. PMID: 30767799
-
Serial effects are optimal.Behav Brain Sci. 2018 Jan;41:e229. doi: 10.1017/S0140525X18001395. Behav Brain Sci. 2018. PMID: 30767801
-
Observer models of perceptual development.Behav Brain Sci. 2018 Jan;41:e238. doi: 10.1017/S0140525X1800136X. Behav Brain Sci. 2018. PMID: 30767802
-
Optimality is critical when it comes to testing computation-level hypotheses.Behav Brain Sci. 2018 Jan;41:e231. doi: 10.1017/S0140525X18001450. Behav Brain Sci. 2018. PMID: 30767804
-
Bayesian statistics to test Bayes optimality.Behav Brain Sci. 2018 Jan;41:e246. doi: 10.1017/S0140525X18001334. Behav Brain Sci. 2018. PMID: 30767805
-
Although optimal models are useful, optimality claims are not that common.Behav Brain Sci. 2018 Jan;41:e228. doi: 10.1017/S0140525X18001462. Behav Brain Sci. 2018. PMID: 30767806 Free PMC article.
-
Discarding optimality: Throwing out the baby with the bathwater?Behav Brain Sci. 2018 Jan;41:e243. doi: 10.1017/S0140525X18001401. Behav Brain Sci. 2018. PMID: 30767807
-
Credo for optimality.Behav Brain Sci. 2018 Jan;41:e244. doi: 10.1017/S0140525X18001346. Behav Brain Sci. 2018. PMID: 30767808
-
Identifying suboptimalities with factorial model comparison.Behav Brain Sci. 2018 Jan;41:e234. doi: 10.1017/S0140525X18001541. Behav Brain Sci. 2018. PMID: 30767822
-
Suboptimalities for sure: Arguments from evolutionary theory.Behav Brain Sci. 2018 Jan;41:e247. doi: 10.1017/S0140525X18001322. Behav Brain Sci. 2018. PMID: 30767823
-
Suboptimality in perceptual decision making and beyond.Behav Brain Sci. 2018 Jan;41:e225. doi: 10.1017/S0140525X18001528. Behav Brain Sci. 2018. PMID: 30767824
-
Perceptual suboptimality: Bug or feature?Behav Brain Sci. 2018 Jan;41:e245. doi: 10.1017/S0140525X18001437. Behav Brain Sci. 2018. PMID: 30767825
-
Optimality is both elusive and necessary.Behav Brain Sci. 2018 Jan;41:e236. doi: 10.1017/S0140525X18001425. Behav Brain Sci. 2018. PMID: 30767827
-
Characterising variations in perceptual decision making.Behav Brain Sci. 2018 Jan;41:e241. doi: 10.1017/S0140525X18001371. Behav Brain Sci. 2018. PMID: 30767831
-
Non-optimal perceptual decision in human navigation.Behav Brain Sci. 2018 Jan;41:e250. doi: 10.1017/S0140525X18001498. Behav Brain Sci. 2018. PMID: 30767832
-
Leveraging decision consistency to decompose suboptimality in terms of its ultimate predictability.Behav Brain Sci. 2018 Jan;41:e248. doi: 10.1017/S0140525X18001504. Behav Brain Sci. 2018. PMID: 30767833
-
The role of (bounded) optimization in theory testing and prediction.Behav Brain Sci. 2018 Jan;41:e232. doi: 10.1017/S0140525X18001486. Behav Brain Sci. 2018. PMID: 30767834
-
When the simplest voluntary decisions appear patently suboptimal.Behav Brain Sci. 2018 Jan;41:e240. doi: 10.1017/S0140525X18001474. Behav Brain Sci. 2018. PMID: 30767836
-
Model comparison, not model falsification.Behav Brain Sci. 2018 Jan;41:e233. doi: 10.1017/S0140525X18001516. Behav Brain Sci. 2018. PMID: 30767837
References
-
- Abrahamyan Arman, Silva Laura Luz, Dakin Steven C, Carandini Matteo, Gardner Justin L. Adaptable History Biases in Human Perceptual Decisions. Proceedings of the National Academy of Sciences. 2016;113(25):E3548–57. http://www.pnas.org/lookup/doi/10.1073/pnas.1518786113. - DOI - PMC - PubMed
-
- Abrams Jared, Barbot Antoine, Carrasco Marisa. Voluntary Attention Increases Perceived Spatial Frequency. Attention, Perception, & Psychophysics. 2010;72(6):1510–21. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id.... - PMC - PubMed
-
- Acerbi Luigi. Complex Internal Representations in Sensorimotor Decsision Making: A Bayesian Investigation. University of Edinburgh; 2014. https://www.era.lib.ed.ac.uk/bitstream/handle/1842/16233/Acerbi2015.pdf?....
-
- Acerbi Luigi, Vijayakumar Sethu, Wolpert Daniel M. On the Origins of Suboptimality in Human Probabilistic Inference.” edited by J. Beck. PLoS computational biology. 2014;10(6):e1003661. http://dx.plos.org/10.1371/journal.pcbi.1003661. - DOI - PMC - PubMed
-
- Acerbi Luigi, Wolpert Daniel M, Vijayakumar Sethu. Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing. PLoS computational biology. 2012;8(11):e1002771. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.10.... - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources