Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun:76:339-349.
doi: 10.1016/j.wasman.2018.02.039. Epub 2018 Mar 2.

Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol

Affiliations

Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol

Fabrícia M S Silva et al. Waste Manag. 2018 Jun.

Abstract

In this study, hydrogen and methane production from co-digestion of food waste (FW), sewage sludge (SS) and raw glycerol (GL) was evaluated in a two-stage acidogenesis-methanogenesis anaerobic system under mesophilic conditions (35 °C). The effect of glycerol addition (1 and 3% v/v) as co-substrate was assessed in ternary mixtures (FW + SS + GL), with the concentration of all substrates kept at 10 g VS/L. Besides contributing to reduce the lag phase of the acidogenic bacterial culture, the presence of GL increased the hydrogen production in all tested conditions and the maximum hydrogen yield was obtained for the FW + SS + 3%GL mixture (179.3 mL H2/g VS). On the other hand, the highest methane production (342 mL CH4/g VS) was achieved in the test supplemented with 1% GL. At 3% GL, abrupt reductions in the biogas CH4 content and pH values resulting from instability in methanogenesis process were noticed over the experiment. By taking into account the hydrogen and methane production stages, the highest energy yield (i.e., 15.5 kJ/g VS) was obtained with the ternary mixture containing 1% GL. Overall, the results of this study demonstrate the feasibility of using glycerol as co-substrate to increase the H2 and CH4 production efficiency in a two-stage anaerobic co-digestion process, allowing simultaneous treatment of three residues (FW, SS and GL) and energy production.

Keywords: Co-digestion; Glycerol; Hydrogen; Methane; Organic waste; Sewage sludge.

PubMed Disclaimer

LinkOut - more resources