Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;20(4):1531-1549.
doi: 10.1111/1462-2920.14082. Epub 2018 Mar 26.

The pre-rRNA processing factor Nop53 regulates fungal development and pathogenesis via mediating production of reactive oxygen species

Affiliations

The pre-rRNA processing factor Nop53 regulates fungal development and pathogenesis via mediating production of reactive oxygen species

Sheng-Nan Cao et al. Environ Microbiol. 2018 Apr.

Abstract

Botrytis cinerea is a necrotrophic plant fungal pathogen that annually causes enormous economic losses worldwide. The ribosome is an organelle for cellular protein biosynthesis. However, little is known about how the ribosome operates as a machine to mediate microbial pathogenesis. Here, we demonstrate that Nop53, a late-acting factor for 60S ribosomal subunit maturation, is crucial for the pathogen's development and virulence. BcNop53 is functionally equivalent to yeast nop53p. Complementation of BcNOP53 completely restored the growth defect of the yeast Δnop53 mutant. BcNop53 is located in nuclei and disruption of BcNOP53 also dramatically impaired pathogen growth. Deletion of BcNOP53 blocked infection structure formation and abolished virulence of the pathogen, possibly due to reduced production of reactive oxygen species. Moreover, loss of BcNOP53 impaired pathogen conidiation and stress adaptation, altered conidial and sclerotial morphology, retarded conidium and sclerotium germination as well as reduced the activities of cell-wall degradation-associated enzymes. Sclerotium production was, however, increased. Complementation with the wild-type BcNOP53 allele rescued defects found in the ΔBcnop53 mutant. Our work establishes a systematic elucidation of Nop53 in regulating microbial development and pathogenesis, provides novel insights into ribosomal processes that regulate fungal pathogenesis, and may open up new targets for addressing fungal diseases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources