Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987 Feb;9(2):341-8.
doi: 10.1016/s0735-1097(87)80387-x.

Nonuniformity: a physiologic modulator of contraction and relaxation of the normal heart

Free article
Review

Nonuniformity: a physiologic modulator of contraction and relaxation of the normal heart

D L Brutsaert. J Am Coll Cardiol. 1987 Feb.
Free article

Abstract

Nonuniformity of mechanical performance is inherent to the multicellular nature and specific geometry and configuration of the ventricle of the heart. Although the concept of nonuniformity of the diseased heart is not new, ventricular function and the performance of the heart as a muscular pump cannot be understood unless nonuniform behavior is taken into account, even under normal conditions. Along with the loading conditions throughout the cardiac cycle and the time courses of activation and inactivation, the nonuniform behavior of load and of activation and inactivation in space and in time constitutes a third important determinant of mechanical performance and efficiency of the ventricle during both contraction and relaxation. Hence, a triad (load, activation-inactivation, nonuniformity) of controls regulates systolic function of the normal ventricle. In the diseased heart, even when loading and activation-inactivation are normal, the modulating role played by this nonuniformity can become imbalanced because of abnormal cavity size or shape or because of regional dysfunction. Such an imbalance would diminish external efficiency (the ratio of work performed to oxygen utilized) of the ventricle and result in incoordinate contraction and relaxation. These abnormalities, in turn, could exacerbate manifest cardiac failure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources