Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2018 Feb 28;19(1):27.
doi: 10.1186/s13059-018-1409-1.

Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology

Affiliations
Comment

Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology

Gaetan Burgio. Genome Biol. .

Erratum in

Abstract

The generation of genetically modified alleles in mice using conventional transgenesis technologies is a long and inefficient process. A new study shows that the in situ delivery of CRISPR/Cas9 reagents into pregnant mice results in a high efficiency of editing, and enables the rapid generation of both simple and complex alleles.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The author declares that he has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Generation of knockout and knockin alleles using embryonic stem (ES) cell technology in mice. A cloning procedure is undertaken to insert the construct into a plasmid vector as a template to replace the endogenous locus. This template could be a drug-selection cassette only (knockout) or an exon flanked with two loxP sites, or a more complex feature (knockin). These vectors contain a positive and negative selection cassette. The plasmid is then electroporated into the ES cells and then drug selected in vitro. After verification that the sequence is correctly inserted, the cells are microinjected into a blastocyst, before being surgically transferred into pseudopregnant females. The chimeric progenies will be genotyped to ensure the expected construct is correctly inserted into the genome by homologous recombination. b Generation of complex alleles using improved-genome editing via oviductal nucleic acid delivery (i-GONAD) technology. One or two single guide RNAs (sgRNA) are designed to either disrupt a critical exon (knockout) or remove an entire exon for replacement with a repair template (knockin). The sgRNAs are synthesized, or in vitro transcribed, and then complexed with the tracrRNA and then Cas9 protein to form a ribonucleoprotein (RNP) complex. The RNPs are in situ electroporated with a long single-stranded oligonucleotide repair template (ssODN) into the oviduct of a pregnant female. The progenies are genotyped to ascertain successful editing of the gene of interest

Comment on

References

    1. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51:503–512. doi: 10.1016/0092-8674(87)90646-5. - DOI - PubMed
    1. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18:92. doi: 10.1186/s13059-017-1220-4. - DOI - PMC - PubMed
    1. Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, et al. i-GONAD: a robust method for in situ germ-line genome engineering using CRISPR nucleases. Genome Biol. 2018. 10.1186/s13059-018-1400-x - PMC - PubMed
    1. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–918. doi: 10.1016/j.cell.2013.04.025. - DOI - PMC - PubMed
    1. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–1379. doi: 10.1016/j.cell.2013.08.022. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources