Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr;35(4):471-82.
doi: 10.1177/35.4.2950164.

Cytochemical localization of Ca2+-Mg2+ adenosine triphosphatase in rat incisor ameloblasts during enamel secretion and maturation

Cytochemical localization of Ca2+-Mg2+ adenosine triphosphatase in rat incisor ameloblasts during enamel secretion and maturation

A H Salama et al. J Histochem Cytochem. 1987 Apr.

Abstract

A modified Wachstein-Meisel medium containing lead or cerium as capturing ions was used to localize Ca2+-Mg2+ adenosine triphosphatase (ATPase; EC 3.6.1.3) in rat incisor ameloblasts during enamel formation. Sections representing different developmental stages were processed for electron microscopic cytochemistry. Distribution and intensity of the observed reaction product, which was almost exclusively associated with cell membranes, varied according to the stage of enamel formation. During the secretory stage, intense reaction product was evident along the entire plasma membrane of ameloblasts and papillary cells. The early transitional ameloblasts showed reaction product on their proximal and lateral cell membranes, but not distally. In late transitional (pre-absorptive) ameloblasts, distal cell membranes exhibited intense reaction product. During enamel maturation, smooth-ended ameloblasts showed reaction product proximally and laterally, but not distally. Ruffle-ended maturative ameloblasts exhibited intense reaction product along their lateral and distal membranes. The intensity of the latter was decreased but not eliminated by levamisole. In the transition from smooth-ended to ruffle-ended cells, the reaction product became evident distally, concomitant with the appearance of cell membrane invaginations. These data are consistent with a possible role for Ca2+-Mg2+ ATPase in controlling calcium availability at the enamel mineralization front.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources