Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 14;10(10):8702-8711.
doi: 10.1021/acsami.7b19346. Epub 2018 Mar 5.

Tunable Pt-MoS x Hybrid Catalysts for Hydrogen Evolution

Affiliations

Tunable Pt-MoS x Hybrid Catalysts for Hydrogen Evolution

Xinyi Chia et al. ACS Appl Mater Interfaces. .

Abstract

Platinum (Pt)-based materials are inevitably among the best-performing electrocatalysts for hydrogen evolution reaction (HER). MoS2 was suggested to be a potent HER catalyst to replace Pt in this reaction by theoretical modeling; however, in practice, this dream remains elusive. Here we show a facile one-pot bottom-up synthesis of Pt-MoS x composites using electrochemical reduction in an electrolytic bath of Pt precursor and ammonium tetrathiomolybdate under ambient conditions. By modifying the millimolar concentration of Pt precursors, composites of different surface elemental composition are fabricated; specifically, Pt1.8MoS2, Pt0.1MoS2.5, Pt0.2MoS0.6, and Pt0.3MoS0.8. All electrodeposited Pt-MoS x hybrids showcase low overpotentials and small Tafel slopes that outperform MoS2 as an electrocatalyst. Tantamount to electrodeposited Pt, the rate-limiting process in the HER mechanism is determined to be the Heyrovsky desorption across Pt-MoS x hybrids and starkly swings from the rate-determining Volmer adsorption step in MoS2. The Pt-MoS x composites are equipped with catalytic performance that closely mirrors that of electrodeposited Pt, in particular the HER kinetics for Pt1.8MoS2 and Pt0.1MoS2.5. This work advocates electrosynthesis as a cost-effective method for catalyst design and fabrication of competent composite materials for water splitting applications.

Keywords: doping; electrodeposition; hydrogen evolution; molybdenum disulfide; platinum.

PubMed Disclaimer

LinkOut - more resources