Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 15:1687:129-136.
doi: 10.1016/j.brainres.2018.02.049. Epub 2018 Mar 3.

Intra-arterial human urinary kallidinogenase alleviates brain injury in rats with permanent middle cerebral artery occlusion through PI3K/AKT/FoxO1 signaling pathway

Affiliations

Intra-arterial human urinary kallidinogenase alleviates brain injury in rats with permanent middle cerebral artery occlusion through PI3K/AKT/FoxO1 signaling pathway

Ning Ma et al. Brain Res. .

Abstract

An urgent need exists to develop intra-arterial treatment for acute ischemic stroke in animal study. This study aimed to explore the beneficial effects of intra-arterial administration of human urinary kallidinogenase (HUK) on brain injury after permanent middle cerebral artery occlusion (pMCAO) in a rat model, and the potential underlying molecular mechanisms. Brain injury induced by pMCAO was evaluated through measuring neurological deficit scores, neuropathological changes, and inflammatory factors. Neurological deficits were observed 24 h after pMCAO and were alleviated by intra-arterial HUK treatment obviously. Inhibition of PI3K by LY294002 blocked the beneficial effect of HUK on neurological functions. In contrast to the pMCAO group, the intra-arterial HUK treatment group showed relatively more regularly arranged neurons and fewer pyknosis. Neurodegeneration, necrosis, infarct area and markers for brain injury were all ameliorated by intra-arterial HUK treatment. Moreover, a lower expression of inflammatory factors including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and a higher expression of IL-10 were observed in the intra-arterial HUK treatment group than that in the pMCAO group. Additionally, when comparing with pMCAO group, a lower level of caspase-3, bax, and apoptotic rate, and a higher level of bcl-2, p-PI3K, p-AKT and p-FoxO1were observed in the pMCAO + HUK group. These results suggest that intra-arterial administration of HUK is a promising therapeutic strategy against pMCAO induced brain injury, and PI3K/AKT/FoxO1 signaling pathway may be involved in this process.

Keywords: Apoptosis; Brain injury; Human urinary kallidinogenase; Inflammatory factor; Intra-arterial administration; Middle cerebral artery occlusion.

PubMed Disclaimer

MeSH terms

LinkOut - more resources