Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar 2:6:16.
doi: 10.1186/s40560-018-0286-8. eCollection 2018.

Management of patients with high-risk pulmonary embolism: a narrative review

Affiliations
Review

Management of patients with high-risk pulmonary embolism: a narrative review

Takeshi Yamamoto. J Intensive Care. .

Abstract

High-risk pulmonary embolism (PE) is a life-threatening disorder associated with high mortality and morbidity. Most deaths in patients with shock occur within the first few hours after presentation, and rapid diagnosis and treatment is therefore essential to save patients' lives. The main manifestations of major PE are acute right ventricular (RV) failure and hypoxia. RV pressure overload is predominantly related to the interaction between the mechanical pulmonary vascular obstruction and the underlying cardiopulmonary status. Computed tomography angiography allows not only adequate visualization of the pulmonary thromboemboli down to at least the segmental level but also RV enlargement as an indicator of RV dysfunction. Bedside echocardiography is an acceptable alternative under such circumstances. Although it does not usually provide a definitive diagnosis or exclude pulmonary embolism, echocardiography can confirm or exclude severe RV pressure overload and dysfunction. Extracorporeal membrane oxygenation support can be an effective procedure in patients with PE-induced circulatory collapse. Thrombolysis is generally accepted in unstable patients with high-risk PE; however, thrombolytic agents cannot be fully administered to patients with a high risk of bleeding. Conversely, catheter-directed treatment is an optimal treatment strategy for patients with high-risk PE who have contraindications for thrombolysis and is a minimally invasive alternative to surgical embolectomy. It can be performed with a minimum dose of thrombolytic agents or without, and it can be combined with various procedures including catheter fragmentation or embolectomy in accordance with the extent of the thrombus on a pulmonary angiogram. Hybrid catheter-directed treatment can reduce a rapid heart rate and high pulmonary artery pressure and can improve the gas exchange indices and outcomes. Surgical embolectomy is also performed in patients with contraindications for or an inadequate response to thrombolysis. Large hospitals having an intensive care unit should preemptively establish diagnostic and therapeutic protocols and rehearse multidisciplinary management for patients with high-risk PE. Coordination with a skilled team comprising intensivists, cardiologists, cardiac surgeons, radiologists, and other specialists is crucial to maximize success.

Keywords: Catheter-directed treatment; Multidisciplinary management; Pulmonary embolism; Surgical embolectomy; Thrombolytic therapy.

PubMed Disclaimer

Conflict of interest statement

Not applicableNot applicableThe author declares that he has no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Pathophysiologic cycle of high-risk PE. PE pulmonary embolism, PA pulmonary artery, RV right ventricular, LV left ventricular
Fig. 2
Fig. 2
Proposed diagnostic algorithm for patients with suspected high-risk PE. #Apart from the diagnosis of RV dysfunction, bedside transthoracic echocardiography may, in some cases, directly confirm PE by visualizing mobile thrombi in the right heart chambers. Ancillary bedside imaging tests include transesophageal echocardiography, which may detect emboli in the pulmonary artery and its main branches, and bilateral compression venous ultrasonography, which may confirm deep vein thrombosis and thus be of help in emergency management decisions. PE pulmonary embolism, RV right ventricular
Fig. 3
Fig. 3
Treatment algorithm for high-risk PE. #Consider ECMO according to hospital equipment and patient condition.*Select appropriate treatment according to hospital equipment and patient condition. **Consider reduced-dose and stepwise thrombolysis for patients in whom the risk of bleeding cannot be ruled out. ECMO extracorporeal membrane oxygenation

Similar articles

Cited by

References

    1. Goldhaber SZ. Pulmonary embolism. In: Mann D, Zipes D, Libby P, Bonow R, editors. Braunwald's heart disease: a textbook of cardiovascular medicine. tenth. Philadelphia: Saunders; 2015. pp. 1664–1681.
    1. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121:877–905. doi: 10.1378/chest.121.3.877. - DOI - PubMed
    1. Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation. 2006;113:577–582. doi: 10.1161/CIRCULATIONAHA.105.592592. - DOI - PubMed
    1. Sakuma M, Nakamura M, Nakanishi N, Miyahara Y, Tanabe N, Yamada N, Kuriyama T, Kunieda T, Sugimoto T, Nakano T, Shirato K. Inferior vena cava filter is a new additional therapeutic option to reduce mortality from acute pulmonary embolism. Circ J. 2004;68:816–821. doi: 10.1253/circj.68.816. - DOI - PubMed
    1. Kasper W, Konstantinides S, Geibel A, Olschewski M, Heinrich F, Grosser KD, Rauber K, Iversen S, Redecker M, Kienast J. Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J Am Coll Cardiol. 1997;30:1165–1171. doi: 10.1016/S0735-1097(97)00319-7. - DOI - PubMed

LinkOut - more resources