Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 May:131:120-127.
doi: 10.1016/j.phrs.2018.03.002. Epub 2018 Mar 4.

Hydrogen sulfide and autophagy: A double edged sword

Affiliations
Review

Hydrogen sulfide and autophagy: A double edged sword

Dongdong Wu et al. Pharmacol Res. 2018 May.

Abstract

Hydrogen sulfide (H2S) has been considered the third gaseous signaling molecule that plays important roles in a wide range of physiological and pathological conditions. However, there has been some controversy on the role of H2S in autophagy. Recent studies indicate that a number of signaling pathways are involved in the pro-autophagy effect of H2S, such as PI3K/Akt/mTOR, AMPK/mTOR, LKB1/STRAD/MO25, and miR-30c signaling pathways. On the other hand, there are many signaling pathways that play important roles in the anti-autophagy effect of H2S, including SR-A, PI3K/SGK1/GSK3β, PI3K/AKT/mTOR, Nrf2-ROS-AMPK, AMPK/mTOR, and JNK1 signaling pathways. Novel H2S-releasing donors/drugs could be designed and identified in order to increase the therapeutic effects by mediating autophagy in human diseases. In this review, the H2S metabolism in mammals is summarized and the effects of signaling pathways in H2S-mediated autophagy are further discussed.

Keywords: AMPK; Autophagy; Human diseases; Hydrogen sulfide; Metabolism; mTOR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources