Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep;18(9):1314-1340.
doi: 10.1002/tcr.201700098. Epub 2018 Mar 8.

Transition Metal-Catalyzed Dicarbofunctionalization of Unactivated Olefins

Affiliations
Review

Transition Metal-Catalyzed Dicarbofunctionalization of Unactivated Olefins

Roshan K Dhungana et al. Chem Rec. 2018 Sep.

Abstract

Transition metal (TM)-catalyzed difunctionalization of unactivated olefins with two carbon-based entities is a powerful method to construct complex molecular architectures rapidly from simple and readily available feedstock chemicals. While dicarbofunctionalization of unactivated olefins has a long history typically with the use of either carbon monoxide to intercept C(sp3 )-[M] (alkyl-TM) species or substrates lacking in β-hydrogen (β-Hs), development of this class of reaction still remains seriously limited due to complications of β-H elimination arising from the in situ-generated C(sp3 )-[M] intermediates. Over the years, different approaches have been harnessed to suppress β-H elimination, which have led to the development of various types of olefin dicarbofunctionalization reactions even in substrates that generate C(sp3 )-[M] intermediates bearing β-Hs with a wide range of electrophiles and nucleophiles. In this review, these developments will be discussed both through the lens of historical perspectives as well as the strategies scrutinized over the years to address the issue of β-H elimination. However, this review article by no means is designed to be exhaustive in the field, and is merely presented to provide the readers an overview of the key reaction developments.

Keywords: Cross-coupling; Cyclization; Dicarbofunctionalization; Heck carbometallation; Olefins.

PubMed Disclaimer

LinkOut - more resources