Circulating Fetuin-A and Risk of Type 2 Diabetes: A Mendelian Randomization Analysis
- PMID: 29523632
- PMCID: PMC6278908
- DOI: 10.2337/db17-1268
Circulating Fetuin-A and Risk of Type 2 Diabetes: A Mendelian Randomization Analysis
Abstract
Fetuin-A, a hepatic-origin protein, is strongly positively associated with risk of type 2 diabetes in human observational studies, but it is unknown whether this association is causal. We aimed to study the potential causal relation of circulating fetuin-A to risk of type 2 diabetes in a Mendelian randomization study with single nucleotide polymorphisms located in the fetuin-A-encoding AHSG gene. We used data from eight European countries of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study including 10,020 incident cases. Plasma fetuin-A concentration was measured in a subset of 965 subcohort participants and 654 case subjects. A genetic score of the AHSG single nucleotide polymorphisms was strongly associated with fetuin-A (28% explained variation). Using the genetic score as instrumental variable of fetuin-A, we observed no significant association of a 50 µg/mL higher fetuin-A concentration with diabetes risk (hazard ratio 1.02 [95% CI 0.97, 1.07]). Combining our results with those from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (12,171 case subjects) also did not suggest a clear significant relation of fetuin-A with diabetes risk. In conclusion, although there is mechanistic evidence for an effect of fetuin-A on insulin sensitivity and secretion, this study does not support a strong, relevant relationship between circulating fetuin-A and diabetes risk in the general population.
© 2018 by the American Diabetes Association.
Conflict of interest statement
Figures
References
-
- Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Krober SM, Machicao F, Fritsche A, Haring HU. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care. 2006;29:853–857. - PubMed
-
- Auberger P, Falquerho L, Contreres JO, Pages G, Le Cam G, Rossi B, Le Cam A. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell. 1989;58:631–640. - PubMed
-
- Rauth G, Poschke O, Fink E, Eulitz M, Tippmer S, Kellerer M, Haring HU, Nawratil P, Haasemann M, Jahnen-Dechent W, et al. The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. European journal of biochemistry / FEBS. 1992;204:523–529. - PubMed
-
- Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS, Jen KL, Charron MJ, Jahnen-Dechent W, Grunberger G. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes. 2002;51:2450–2458. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
