Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin
- PMID: 29523933
- DOI: 10.1007/s00253-018-8897-5
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin
Abstract
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Keywords: Arthrobotrys oligospora; C. elegans; Nematode-trapping fungi.
Similar articles
-
Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora.Environ Microbiol Rep. 2013 Aug;5(4):511-7. doi: 10.1111/1758-2229.12054. Epub 2013 Apr 19. Environ Microbiol Rep. 2013. PMID: 23864564
-
Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus Arthrobotrys oligospora.Appl Environ Microbiol. 2018 Apr 16;84(9):e02749-17. doi: 10.1128/AEM.02749-17. Print 2018 May 1. Appl Environ Microbiol. 2018. PMID: 29453265 Free PMC article.
-
AoMedA has a complex regulatory relationship with AoBrlA, AoAbaA, and AoWetA in conidiation, trap formation, and secondary metabolism in the nematode-trapping fungus Arthrobotrys oligospora.Appl Environ Microbiol. 2023 Sep 28;89(9):e0098323. doi: 10.1128/aem.00983-23. Epub 2023 Sep 1. Appl Environ Microbiol. 2023. PMID: 37655869 Free PMC article.
-
Nematode-Trapping Fungi.Microbiol Spectr. 2017 Jan;5(1):10.1128/microbiolspec.funk-0022-2016. doi: 10.1128/microbiolspec.FUNK-0022-2016. Microbiol Spectr. 2017. PMID: 28128072 Free PMC article. Review.
-
Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives.Biol Rev Camb Philos Soc. 2017 Feb;92(1):357-368. doi: 10.1111/brv.12233. Epub 2015 Nov 3. Biol Rev Camb Philos Soc. 2017. PMID: 26526919 Review.
Cited by
-
Molecular Mechanisms of the Biological Control of Pine Wilt Disease Using Microorganisms.Microorganisms. 2025 May 26;13(6):1215. doi: 10.3390/microorganisms13061215. Microorganisms. 2025. PMID: 40572104 Free PMC article. Review.
-
Nematode Pheromones as Key Mediators of Behavior, Development, and Ecological Interactions.Biomolecules. 2025 Jul 9;15(7):981. doi: 10.3390/biom15070981. Biomolecules. 2025. PMID: 40723853 Free PMC article. Review.
-
Drechslerelladaliensis and D.xiaguanensis (Orbiliales, Orbiliaceae), two new nematode-trapping fungi from Yunnan, China.Biodivers Data J. 2022 Dec 16;10:e96642. doi: 10.3897/BDJ.10.e96642. eCollection 2022. Biodivers Data J. 2022. PMID: 36761641 Free PMC article.
-
Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling.J Fungi (Basel). 2023 Dec 11;9(12):1183. doi: 10.3390/jof9121183. J Fungi (Basel). 2023. PMID: 38132784 Free PMC article.
-
Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid.Nat Commun. 2021 Sep 15;12(1):5462. doi: 10.1038/s41467-021-25535-1. Nat Commun. 2021. PMID: 34526503 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources