Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May:126:173-186.
doi: 10.1016/j.plaphy.2018.02.021. Epub 2018 Mar 2.

Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems

Affiliations

Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems

Mirza Hasanuzzaman et al. Plant Physiol Biochem. 2018 May.

Abstract

To investigate the physiological and biochemical mechanisms of nitric oxide (NO)-induced paraquat (PQ) tolerance in plants, we pretreated a set of 10-day-old Brassica napus seedlings with 500 μM sodium nitroprusside (SNP - a NO donor) for 24 h. Then, three doses of PQ (62.5, 125 and 250 μM) were applied separately, as well as to SNP-pretreated seedlings, and the seedlings were allowed to grow for an additional 48 h. The seedlings treated with PQ showed clear, dose-dependent signs of oxidative stress, with elevated levels of lipid peroxidation (MDA, malondialdehyde), H2O2 and O2- generation, and lipoxygenase (LOX) activity. Paraquat treatment disrupted pools of water-soluble antioxidants (ascorbate-AsA and reduced glutathione-GSH). Paraquat had different effects on the activities of antioxidant enzymes. The activities of glutathione reductase (GR) and catalase (CAT) decreased after PQ treatment in a dose-dependent manner, while the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glyoxalase (Gly I and Gly II) decreased only with high doses of PQ (125 and 250 μM). By contrast, the activities of monodehydroascorbate reductase (MDHAR), glutathione S-transferase (GST) and glutathione peroxidase (GPX) increased after PQ treatment. A higher dose of PQ reduced chlorophyll and leaf water content but increased the methylglyoxal (MG) and proline (Pro) content. Compared to PQ alone, PQ supplemented with exogenous NO reduced LOX activity, the AsA-GSH pool, and the activities of APX, DHAR, GR, GPX, Gly I and Gly II. These effects helped to reduce oxidative stress and MG toxicity and were accompanied by reduced chlorosis and increased relative water content. Given these results, exogenous NO was found to be a key player in the mitigation of PQ toxicity in plants.

Keywords: Abiotic stress; Herbicide toxicity; MethylGlyoxal; Reactive oxygen species; Signaling molecule; Xenobiotics.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources