Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May 5;262(13):6108-13.

Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein

  • PMID: 2952648
Free article

Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein

K A Alexander et al. J Biol Chem. .
Free article

Abstract

P-57 is a neural-specific calmodulin binding protein with novel calmodulin binding properties. P-57 exhibits higher affinity for calmodulin-Sepharose in the absence of free Ca2+ than in the presence of Ca2+ (Andreasen, T.J., Luetje, C.W., Heideman, W. & Storm, D.R. (1983) Biochemistry 22, 4615-4618; Cimler, B. M., Andreasen, T.J., Andreasen, K.I. & Storm, D.R. (1985) J. Biol. Chem. 260, 10784-10788). In this study, the dissociation constants for P-57 and immunopurified 5-[[(iodoacetylamino)ethyl]-amino]-1-naphthalenesulfonic acid-labeled calmodulin (AEDANS-CaM) were determined under low and high ionic strength conditions. In the absence of added KCl, the dissociation constants for the P-57 X AEDANS-CaM complex were 2.3 X 10(-7) +/- 6 X 10(-8) M and 1.0 X 10(-6) +/- 3 X 10(-7) M in the presence and absence of excess Ca2+ chelator. The addition of KCl to 150 mM increased the Ca2+-independent and -dependent dissociation constants to 3.4 X 10(-6) +/- 9 X 10(-7) M and 3.0 X 10(-6) +/- 9 X 10(-7) M, respectively. The association of P-57 with AEDANS-CaM under low Ca2+ conditions was determined as a function of KCl concentrations. By taking into account the amount of P-57 found in brain and its affinity for calmodulin, it is concluded that most or all of the CaM would be complexed to P-57 in unstimulated cells. P-57 was phosphorylated by the Ca2+-phospholipid-dependent protein kinase (protein kinase C) with a phosphate:protein molar ratio of 1.3. Phosphoamino acid analysis demonstrated phosphorylation at a serine residue. CaM decreased the rate of phosphorylation of P-57 by protein kinase C, and phosphorylation prevented P-57 binding to calmodulin-Sepharose. P-57 was not phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase. It is proposed that P-57 binds and localizes calmodulin at specific sites within the cell and that free calmodulin is released locally in response to phosphorylation of P-57 by protein kinase C and/or to increases in intracellular free Ca2+. This regulatory mechanism, which appears to be specific to brain, would serve to decrease the response time for Ca2+-calmodulin-regulated processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources