Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 12;18(1):122.
doi: 10.1186/s12879-018-3024-x.

Molecular epidemiology and virulence characteristics of Staphylococcus aureus nasal colonization in medical laboratory staff: comparison between microbiological and non-microbiological laboratories

Affiliations

Molecular epidemiology and virulence characteristics of Staphylococcus aureus nasal colonization in medical laboratory staff: comparison between microbiological and non-microbiological laboratories

Xiaoying Xie et al. BMC Infect Dis. .

Abstract

Background: Medical laboratory staff are a high-risk population for colonization of Staphylococcus aureus (S. aureus) due to direct and dense contact with the pathogens; however, there is limited information about this colonization. This study sought to determine the prevalence and molecular characteristics of nasal colonization by S. aureus in medical laboratory staff in Guangzhou, southern China, and to compare the differences between microbiological laboratory (MLS) and non-microbiological laboratory (NMLS) staff.

Methods: S. aureus colonization was assessed by nasal swab cultures from 434 subjects, including 130 MLSs and 304 NMLSs from 33 hospitals in Guangzhou. All S. aureus isolates underwent the antimicrobial susceptibility test, virulence gene detection and molecular typing.

Results: The overall prevalence of S. aureus carriage was 20.1% (87/434), which was higher in MLSs than in NMLSs (26.2% vs. 17.4%, P < 0.05), while the prevalence of Methicillin-resistant S. aureus (MRSA) was similar. Living with hospital staff was associated with S. aureus carriage. The majority of the isolates harboured various virulence genes, and those in MLSs appeared less resistant to antibiotics and more virulent than their counterparts. A total of 37 different spa types were detected; among these, t338, t437, t189 and t701 were the most frequently encountered types. T338 was the main spa type contributing to nasal colonization Methicillin-sensitive S. aureus (MSSA) (13.0%), and t437-SCCmec IV was predominant in MRSA isolates (40%).

Conclusions: These findings provide insight into the risk factors, molecular epidemiology and virulence gene profiles of S. aureus nasal carriage among the medical laboratory staff in Guangzhou.

Keywords: Antimicrobial susceptibility; Medical laboratory; Nasal carriage; Staphylococcus aureus; Virulence genes; spa type.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of Sun Yat-Sen Memorial Hospital approved the study. Ethics approval number: [2017]伦备第(08)号. All volunteers signed informed consent documents approving the use of their samples for research purposes.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Map of the 33 hospitals in Guangzhou, China, and the subjects, S. aureus and MRSA isolates distribution
Fig. 2
Fig. 2
Thirty-seven spa types grouped into four groups based on DNA microarray analysis. Group A: t002, t571,t304, t008, t116, t5132, t437, t954, t085, t796, t091, t1839, t4938; Group B: t078, t148, t1346, t548, t563, t127, t8457, t10247, t701, t16615(new type); Group C: t189, t441, t3349, t287, t803, t769; t364, t338, t037, t1184, t13960, t034, t1451; Group D: t16614 (new type)
Fig. 3
Fig. 3
Comparison of the resistance rate to 14 antibiotics of the S. aureus isolates between MLS and NMLS group. MLS vs. NMLS, *P < 0.05. MLS, microbiological lab staff; NMLS, non-microbiological lab staff

Similar articles

Cited by

References

    1. Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10(3):505–520. - PMC - PubMed
    1. Botelho-Nevers E, Berthelot P, Verhoeven PO, Grattard F, Cazorla C, Farizon F, Pozzetto B, Lucht F. Are the risk factors associated with Staphylococcus aureus nasal carriage in patients the same than in healthy volunteers? Data from a cohort of patients scheduled for orthopedic material implantation. Am J Infect Control. 2014;42(10):1121–1123. doi: 10.1016/j.ajic.2014.06.026. - DOI - PubMed
    1. Abou Shady HM, Bakr AE, Hashad ME, Alzohairy MA. Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: a comparative study of two cities in Saudi Arabia and Egypt. Braz J Infect Dis. 2015;19(1):68–76. doi: 10.1016/j.bjid.2014.09.005. - DOI - PMC - PubMed
    1. Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis. 2008;8(5):289–301. doi: 10.1016/S1473-3099(08)70097-5. - DOI - PubMed
    1. Xie X, Bao Y, Ouyang N, Dai X, Pan K, Chen B, Deng Y, Wu X, Xu F, Li H, et al. Molecular epidemiology and characteristic of virulence gene of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in sun Yat-sen memorial hospital, Guangzhou, southern China. BMC Infect Dis. 2016;16:339. doi: 10.1186/s12879-016-1684-y. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources