Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action
- PMID: 29532180
- PMCID: PMC6136989
- DOI: 10.1007/164_2018_107
Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action
Abstract
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits. Despite these advances and a plethora of preclinical and clinical observations supporting a central role for brain serotonin 5-HT2A receptors in producing serotonergic psychedelic effects, lingering and new questions about mechanisms abound. These chiefly pertain to molecular neuropharmacology. This chapter is devoted to illuminating and discussing such questions in the context of preclinical experimental approaches for studying mechanisms of action of serotonergic psychedelics, classic and new.
Keywords: 5-HT2A; 5-HT2C; Cingulate cortex; Head-twitch; Ketanserin; Psychedelic mechanisms; Receptor binding; Receptor conformations; Receptor dimers; Receptor function; Serotonin; Signal transduction; α-Adrenergic.
References
-
- Abellan MT, Martin-Ruiz R, Artigas F. Local modulation of the 5-HT release in the dorsal striatum of the rat: an in vivo microdialysis study. Eur Neuropsychopharmacol. 2000;10:455–462. - PubMed
-
- Abi-Saab WM, Bubser M, Roth RH, Deutch AY. 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology. 1999;20:92–96. - PubMed
-
- Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology. 1997;36:589–599. - PubMed
-
- Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex. 2004;14:281–299. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
