Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;31(2):136-145.
Epub 2018 Mar 12.

Antimicrobial susceptibility trends and evolution of isolates with extended spectrum β-lactamases among Gram-negative organisms recovered during the SMART study in Spain (2011-2015)

Affiliations

Antimicrobial susceptibility trends and evolution of isolates with extended spectrum β-lactamases among Gram-negative organisms recovered during the SMART study in Spain (2011-2015)

R Cantón et al. Rev Esp Quimioter. 2018 Apr.

Abstract

Objective: The SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance study monitors antimicrobial susceptibility and extended spectrum β-lactamases (ESBLs) in Gram-negative bacilli recovered from intra-abdominal infections (IAI).

Methods: Antimicrobial susceptibility of 5,343 isolates from IAI recovered in 11 centres during the 2011-2015 SMART-Spain program was analysed by standard microdilution (EUCAST criteria) and compared with that from 2002-2010. ESBLs were phenotypically detected.

Results: Escherichia coli, the most common isolate, significantly decreased in community acquired IAI (60.9% 2002-2010 vs. 56.1% 2011-2015, P=0.0003). It was followed in prevalence by Klebsiella pneumoniae that increased both in the community (8.9% vs. 10.8%, P=0.016) and nosocomial (9.2% vs. 10.8%, P=0.029) IAI and P. aeruginosa, which significantly increased in community acquired IAI (5.6% vs. 8.0%, P=0.0003). ESBLs were more prevalent in K. pneumoniae (16.3%) than in E. coli (9.5%) of nosocomial origin and were more frequently isolated from elderly patients (>60 years). Considering all Enterobacteriaceae, ertapenem (92.3-100%) and amikacin (95.5%-100%) were the most active antimicrobials. Ertapenem activity, unlike amoxicillin-clavulanate or piperacillin-tazobactam, remained virtually unchanged in ESBL (100%) and non-ESBL (98.8%) E. coli producers. Its activity decreased in ESBL-K. pneumoniae (74.7%) but was higher than that of amoxicillin-clavulanate (14.0%) and piperacillin-tazobactam (24.0%). Interestingly, ertapenem susceptibility was maintained in >60% of ESBL isolates that were resistant to amoxicillin-clavulanate, piperacillin-tazobactam or fluoroquinolones.

Conclusions: SMART-Spain results support current guidelines which include ertapenem as empiric treatment in mild-moderate community-acquired IAI, particularly with ESBL producers. These recommendations will need to be updated with the recently introduction of new antimicrobials.

Introducción: El estudio SMART (Study for Monitoring Antimicrobial Resistance Trends) monitoriza la sensibilidad antimicrobiana y las β-lactamasas de espectro extendido (BLEE) en bacilos gramnegativos obtenidos de infecciones intraabdominales (IIA).

Material y Métodos: Se ha analizado la sensibilidad antimicrobiana (microdilución estándar, criterios EUCAST) y las BLEE (detección fenotípica) de 5.343 aislados de IIA en 11 centros del programa SMART-España durante 2011-2015 en comparación con 2002-2010.

Resultados: Escherichia coli, el microorganismo más prevalente, disminuyó significativamente en las IIA de origen comunitario (60,9% 2002-2010 vs. 56,1% 2011-2015, P=0,0003). Fue seguido en prevalencia por Klebsiella pneumoniae que aumentó tanto en IIA comunitaria (8,9% vs. 10,8%, P=0,016) como nosocomial (9,2% vs. 10,8%, P=0,029) y por P. aeruginosa que aumentó en la IIA comunitaria (5,6% vs. 8,0%, P=0,0003). Las BLEE fueron más prevalentes en la IIA nosocomial por K. pneumoniae (16,3%) que por E. coli (9,5%), siendo más frecuentes en pacientes de mayor edad (>60 años). Considerando todas las Enterobacteriaceae, ertapenem (92,3-100%) y amikacina (95,5%-100%) fueron los antimicrobianos más activos. La sensibilidad a ertapenem, al contrario que a amoxicilina-clavulánico o piperacilina-tazobactam, se mantuvo sin cambios en E. coli con (98,8%) y sin BLEE (100%). Su sensibilidad disminuyó en BLEE-K. pneumoniae (74,7%) pero fue mayor que la de amoxicilina-clavulánico (14,0%) o piperacilina-tazobactam (24,0%). Es de resaltar que esta actividad se mantuvo >60% en los aislados con BLEE resistentes a amoxicilina-clavulánico, piperacilina-tazobactam o fluoroquinolonas.

Conclusiones: El estudio SMART-España sustenta las guías actuales que incluyen al ertapenem como tratamiento empírico en la IIA leve-moderada comunitaria, en particular con BLEE. Estas recomendaciones precisaran actualizarse con la reciente introducción de nuevos antimicrobianos.

PubMed Disclaimer

Conflict of interest statement

Rafael Cantón has collaborated in educational meetings sponsored by MSD, Pfizer and AstraZeneca. He has also had research grants from MSD and AstraZeneca. F. Javier Castillo has collaborated in educational meetings sponsored by MSD.

All other authors declare that they have no conflicts of interest regarding this publication.

Figures

Figure 1
Figure 1
Number of hospitals participating and microorganisms recovered per year in the SMART study in Spain from 2002 to 2015
Figure 2
Figure 2
Percentage of Escherichia coli and Klebsiella pneumoniae isolates with extended spectrum β-lactamases recovered per year in the SMART study in Spain from 2002 to 2015
Figure 3
Figure 3
Frequency of Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Proteus mirabilis) with extended spectrum β-lactamases according to age of the patients in the SMART study in Spain comparing 2002-2010 and 2011-2015 periods
Figure 4
Figure 4
Activity of antimicrobials used in intra-abdominal infections against ESBL producing and non-producing Escherichia coli (4a) and Klebsiella pneumoniae (4b) isolates in the SMART study in Spain comparing 2002-2010 and 2011-2015 periods

References

    1. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. . Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013; 34:1–14. PMID: . - PubMed
    1. García-Sánchez JE, García-García MI, García-Garrote F, Sánchez-Romero I. Microbiological diagnosis of intra-abdominal infections. Enferm Infecc Microbiol Clin. 2013; 31:230-9PMID:. - PubMed
    1. Shirah GR, O’Neill PJ. Intra-abdominal infections. Surg Clin North Am. 2014; 94:1319-33. PMID: . - PubMed
    1. Sartelli M, Chichom-Mefire A, Labricciosa FM, Hardcastle T, Abu-Zidan FM, Adesunkanmi AK, et al. . The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2017; 12:29. - PMC - PubMed
    1. Skrupky LP, Tellor BR, Mazuski JE. Current strategies for the treatment of complicated intraabdominal infections. Expert Opin Pharmacother. 2013; 14:1933-47. PMID: . - PubMed

MeSH terms