Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 27;3(4):823-831.
doi: 10.1021/acssensors.8b00064. Epub 2018 Mar 15.

Direct Measurement of a Biomarker's Native Optimal Frequency with Physical Adsorption Based Immobilization

Affiliations

Direct Measurement of a Biomarker's Native Optimal Frequency with Physical Adsorption Based Immobilization

Mackenzie M Honikel et al. ACS Sens. .

Abstract

The optimal frequency (OF) of a biomarker in electrochemical impedance spectroscopy (EIS) is the frequency at which the EIS response best reflects the binding of the biomarker to its molecular recognition element. Commonly, biosensors rely on complicated immobilization chemistry to attach biological molecules to the sensor surface, making the direct study of a biomarker's native OF a challenge. Physical adsorption presents a simple immobilization strategy to study the native biomarker's OF, but its utility is often discouraged due to a loss in biological activity. To directly study a biomarker's native OF and investigate the potential of OF to overcome the limitations of physical adsorption, a combination of EIS and glutaraldehyde-mediated physical adsorption was explored. The experimental sensing platform was prepared by immobilizing either anti-lactoferrin (Lfn) IgG or anti-immunoglobulin E (IgE) onto screen printed carbon electrodes. After characterizing the native OFs of both biomarkers, investigation of the platform's specificity, stability, and performance in complex medium was found to be sufficient. Finally, a paper-based tear sampling component was integrated to transform the testing platform into a prototypical point-of-care dry eye diagnostic. The investigation of native OFs revealed a correlation between the native OFs (57.44 and 371.1 Hz for Lfn and IgE, respectively) and the molecular weight of the antibody-antigen complex. Impedance responses at the native OFs have enabled detection limits of 0.05 mg/mL and 40 ng/mL for Lfn and IgE, respectively, covering the clinically relevant ranges. The native OFs were found to be robust across various testing mediums and conditions.

Keywords: dry eye; electrochemical impedance spectroscopy; glutaraldehyde immobilization; integrated sensor; optimal frequency; point-of-care; tear sampling component.

PubMed Disclaimer

Publication types

LinkOut - more resources