Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug 3:1016:1-11.
doi: 10.1016/j.aca.2018.02.005. Epub 2018 Feb 14.

Solvent-terminated dispersive liquid-liquid microextraction: a tutorial

Affiliations
Review

Solvent-terminated dispersive liquid-liquid microextraction: a tutorial

Fotouh R Mansour et al. Anal Chim Acta. .

Abstract

Solvent-terminated dispersive liquid-liquid microextraction (ST-DLLME) is a special mode of DLLME in which a demulsifying solvent is injected into the cloudy mixture of sample/extractant to break the emulsion and induce phase separation. The demulsification process starts by flocculation of the dispersed microdroplets by Ostwald ripening or coalescence to form larger droplets. Then, the extractant either floats or sinks depending on its density as compared with that for the aqueous sample. The demulsifier should have high surface activity and low surface tension in order to be capable of inducing phase separation. The extraction efficiency in ST-DLLME is controlled by the same experimental variables of normal DLLME (n-DLLME) such as the type and volume of the extractant as well as the disperser. Other parameters such as pH and the temperature of the sample, the stirring rate, the time of extraction and the addition of salt are also important to consider. Along with these factors, the demulsifier type and volume and the demulsification time have to be optimized. By using solvents to terminate the dispersion step in DLLME, the centrifugation process is not necessary. This in turn improves precision, increases throughput, decreases the risk of contamination through human intervention and minimizes the overall analysis time. ST-DLLME has been successfully applied for determination of both inorganic and organic analytes including pesticides and pharmaceuticals in water and biological fluids. Demulsification via solvent injection rather than centrifugation saves energy and makes ST-DLLME easier to automate. These characteristics in addition to the low solvent consumption, the reduced organic waste and the possibility of using water in demulsification bestow green features on ST-DLLME. This tutorial discusses the principle, the practical aspects and the different applications of ST-DLLME.

Keywords: Dispersive liquid-liquid microextraction; Green analytical chemistry; Microextraction; Solvent-demulsification.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources