Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 26:9:350.
doi: 10.3389/fimmu.2018.00350. eCollection 2018.

Mechanisms of Tolerance Induction by Dendritic Cells In Vivo

Affiliations
Review

Mechanisms of Tolerance Induction by Dendritic Cells In Vivo

Hitoshi Hasegawa et al. Front Immunol. .

Abstract

Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.

Keywords: dendritic cells; development; immune tolerance; intestine; regulatory T cells; skin; thymus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
DC development (A) and location and phenotypes of mouse conventional DCs 1 (cDC1s) and conventional DCs 2 (cDC2s) (B). (A) DC, dendritic cells; HSC, hematopoietic stem cells; MP, myeloid procursor; MDP, macrophage/DC progenitor; CDP, common DC progenitor; cDC, conventional DC; pDC, plasmacytoid DC; moDC, monocyte-derived DC. (B) Location and phenotypes of mouse cDC1s (red) and cDC2s (blue).
Figure 2
Figure 2
Induction of tolerance by peripheral dendritic cells (DCs) under steady-state conditions. Tissue-resident, immature DCs capture self-antigens from apoptotic cells, commensal bacteria, and food antigens. Under steady-state conditions, these DCs migrate to the draining lymph nodes without sufficient maturation. Antigen-presenting immature or semi-mature DCs provide insufficient stimulatory signals for T cells and therefore drive naïve T cells to anergy and differentiation into regulatory T cells and regulatory type 1 T (Tr1) cells.
Figure 3
Figure 3
Mechanisms of induction of tolerogenic DCs in the intestine. MLN, mesenteric lymph node; AhR, aryl hydrocarbon receptor; PPARγ, peroxisome proliferator-activated receptor γ; VIP, vasoactive intestinal peptide; IDO, indoleamine 2,3-dioxygenase; RA, retinoic acid.

References

    1. Iberg CA, Jones A, Hawiger D. Dendritic cells as inducers of peripheral tolerance. Trends Immunol (2017) 38(11):793–804.10.1016/j.it.2017.07.007 - DOI - PMC - PubMed
    1. Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The importance of dendritic cells in maintaining immune tolerance. J Immunol (2017) 198(6):2223–31.10.4049/jimmunol.1601629 - DOI - PMC - PubMed
    1. Waisman A, Lukas D, Clausen BE, Yogev N. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol (2017) 39(2):153–63.10.1007/s00281-016-0583-z - DOI - PubMed
    1. Horton C, Shanmugarajah K, Fairchild PJ. Harnessing the properties of dendritic cells in the pursuit of immunological tolerance. Biomed J (2017) 40(2):80–93.10.1016/j.bj.2017.01.002 - DOI - PMC - PubMed
    1. García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev (2016) 15(11):1071–80.10.1016/j.autrev.2016.07.032 - DOI - PubMed

Publication types

LinkOut - more resources