Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 27:9:222.
doi: 10.3389/fpls.2018.00222. eCollection 2018.

New Generation of Resistant Sugar Beet Varieties for Advanced Integrated Management of Cercospora Leaf Spot in Central Europe

Affiliations

New Generation of Resistant Sugar Beet Varieties for Advanced Integrated Management of Cercospora Leaf Spot in Central Europe

Johannes Vogel et al. Front Plant Sci. .

Abstract

Cercospora leaf spot (CLS) epidemics in sugar beet have been increasing in recent years causing higher use of fungicides. Concomitantly, the availability of effective fungicides is at risk because of resistance development in the fungus, the lack of new active ingredients as well as restrictive approval practices. A key option for an integrated management of CLS is cultivation of resistant varieties. Because of the yield penalty in resistant varieties, acceptance in commercial practice so far has been low. The aim of our study was to characterize recent sugar beet varieties registered in Germany in terms of resistance and tolerance to CLS and their value for integrated pest management. The genetic basis of CLS resistance in varieties is protected by intellectual property rights even after variety registration and not open to the public due to economic competition. To gain reliable data for cultivation, varieties have to be tested for their resistance traits under field conditions at varying levels of infection with Cercospora beticola. In collaboration with variety related stakeholders, 15 sugar beet varieties were tested in 49 field trials in Germany from 2014 to 2016 for their yield response to CLS. The trials were set up in a split-plot design with and without infection (i.e., with and without fungicide). The classification of varietal reaction to CLS is based on symptomatic leaf area (susceptibility) and the resulting relative yield loss (tolerance). Since the relation between both parameters varied among varieties, it was used as an additional parameter to describe tolerance. On this basis, three groups of varieties were identified. They can be characterized as a susceptible, a resistant and a presumably tolerant cluster. A comparison of the data with an older dataset originating from 2009 to 2011 revealed that yield performance of recent varieties with resistance to C. beticola caught up with susceptible varieties due to breeding progress. They showed no yield penalty in the absence of the disease and better economic performance than susceptible varieties. It is assumed that these varieties will allow a substantial reduction of fungicide use for an advanced integrated pest management under central European conditions.

Keywords: Cercospora beticola; breeding progress; economic performance; resistance; sugar beet; sugar beet yield; variety trials; yield penalty.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
White sugar yield of sugar beet varieties at environments with (A) low and (B) high infection with Cercospora beticola at two fungicide levels (non-treated and healthy). 30 and 15 environments in Germany, 2014–2016. Different lower case letters indicate significant differences in the non-treated level; different upper case letters indicate significant difference in the healthy level (Tukey-Test, P ≤ 0.05).
FIGURE 2
FIGURE 2
Disease severity (DS) of Cercospora leaf spot and relative loss in white sugar yield (WSY) in 45 environments in Germany, 2014–2016; mean of 15 varieties. Relative loss in white sugar yield (WSY) is the yield difference between healthy and non-treated fungicide levels as percentage of WSY in the healthy level. DS was rated in the non-treated plots on a 1–9 scale (1: no infection, 9: very high infection; BSA, 2000); rs = Spearman’s rank correlation coefficient, ∗∗∗P ≤ 0.001.
FIGURE 3
FIGURE 3
Disease severity of Cercospora leaf spot (CLS) and relative loss of white sugar yield (WSY) in 15 sugar beet varieties tested at (A) 30 environments with low infection with CLS and (B) 15 environments with high infection with CLS; Germany, 2014–2016 under high infection in the non-treated level. Relative loss in WSY is the yield difference between healthy and non-treated fungicide levels as percentage of WSY in the healthy level. DS was rated in the non-treated plots on a 1–9 scale (1: no infection, 9: very high infection; BSA, 2000). P ≤ 0.05 and ∗∗∗P ≤ 0.001.
FIGURE 4
FIGURE 4
Disease severity of Cercospora leaf spot (CLS) and relative loss of white sugar yield (WSY) in 13 sugar beet varieties tested at 13 environments with high infection with CLS; Germany, 2009–2011. Relative loss in WSY is the yield difference between healthy and non-treated fungicide levels as percentage of WSY in the healthy level. DS was rated in the non-treated plots on a 1–9 scale (1: no infection, 9: very high infection; BSA, 2000). ∗∗∗P ≤ 0.05 and 0.001.
FIGURE 5
FIGURE 5
Dendrogram of sugar beet varieties obtained through average linkage cluster analysis based on disease severity of Cercospora leaf spot and relative loss of white sugar yield (WSY). 15 varieties tested at 15 environments in Germany, 2014–2016 under high infection in the non-treated level. Relative loss in WSY is the yield difference between healthy and non-treated fungicide levels as percentage of WSY in the healthy level. (A–C) Denote clusters with an average distance of 0.7.
FIGURE 6
FIGURE 6
Revenue less direct and operating costs of sugar beet varieties tested in 30 environments with low and 15 environments with high infection with CLS; Germany, 2014–2016. Connecting lines were added to illustrate changes in relative excellence. Susceptible (A), tolerant (B), and resistant (C) varieties were clustered according to disease severity of C. beticola and yield reaction to the disease. For details see text. Highest and lowest yielding varieties within each group are indicated by dashed and dash-dotted lines, respectively.

Similar articles

Cited by

References

    1. Agrios G. N. (2005). Plant Pathology 4th Edn. London: Elsevier.
    1. BISZ (2017). Beratung und Information für den Süddeutschen Zuckerrübenanbau. Allgemeine Sortenbeschreibung. Available at: https://bisz.suedzucker.de/sorten/allgemeine-sortenbeschreibung/ [accessed October 24, 2017].
    1. Brendler F., Holtschulte B., Rieckmann W. (2008). Zuckerrübe. Krankheiten, Schädlinge, Unkräuter 2nd Edn. Bonn: AgroConcept.
    1. Brown J. K. M. (2002). Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5 339–344. 10.1016/S1369-5266(02)00270-4 - DOI - PubMed
    1. BSA (2000). Bundessortenamt. Richtlinien für die Durchführung von Landwirtschaftlichen Wertprüfungen und Sortenversuchen. Hanover: Landbuch Verlag; Available at: http://www.bundessortenamt.de/internet30/fileadmin/Files/PDF/Richtlinie_... (verified 18 December 2017).

LinkOut - more resources