Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017:413:31-60.
doi: 10.1007/978-3-319-75241-9_2.

Structural and Molecular Biology of Type IV Secretion Systems

Affiliations

Structural and Molecular Biology of Type IV Secretion Systems

Célia Bergé et al. Curr Top Microbiol Immunol. 2017.

Abstract

Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.

Keywords: Bacterial pilus; Bacterial secretion system; Electron microscopy; Membrane transport; Nanomachine; Virulence factor; X-ray crystallography.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources