IRF4 haploinsufficiency in a family with Whipple's disease
- PMID: 29537367
- PMCID: PMC5915175
- DOI: 10.7554/eLife.32340
IRF4 haploinsufficiency in a family with Whipple's disease
Abstract
Most humans are exposed to Tropheryma whipplei (Tw). Whipple's disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance.
Keywords: IRF4; Whipple's disease; haploinsufficiency; human; immunology; infectious disease; inflammation; microbiology; primary immunodeficiency.
Copyright © 2018, Guérin et al.
Conflict of interest statement
AG, GK, NM, JM, FF, NW, SB, DA, CM, SB, MB, VB, ED, CO, TL, LW, TN, EP, CD, RM, SB, XA, SE, SB, VR, BB, GV, FG, LQ, DC, ST, DR, LA, JB, JC No competing interests declared
Figures

























Comment in
-
Back from the brink of obscurity.Elife. 2018 Apr 18;7:e36649. doi: 10.7554/eLife.36649. Elife. 2018. PMID: 29667578 Free PMC article.
Similar articles
-
Human genetics of Whipple's disease.Curr Opin Rheumatol. 2025 Sep 1;37(5):316-320. doi: 10.1097/BOR.0000000000001088. Epub 2025 Mar 12. Curr Opin Rheumatol. 2025. PMID: 40062480 Free PMC article. Review.
-
Back from the brink of obscurity.Elife. 2018 Apr 18;7:e36649. doi: 10.7554/eLife.36649. Elife. 2018. PMID: 29667578 Free PMC article.
-
Susceptibility of nucleotide-binding oligomerization domain 2 mutations to Whipple's disease.Rheumatology (Oxford). 2024 May 2;63(5):1291-1296. doi: 10.1093/rheumatology/kead372. Rheumatology (Oxford). 2024. PMID: 37467078
-
New insights into Whipple's disease and Tropheryma whipplei infections.Microbes Infect. 2010 Dec;12(14-15):1102-10. doi: 10.1016/j.micinf.2010.08.001. Epub 2010 Aug 11. Microbes Infect. 2010. PMID: 20708091 Review.
-
[Tropheryma whipplei and Whipple disease: false positive PCR detections of Tropheryma whipplei in diagnostic samples are rare].Rev Med Interne. 2008 Nov;29(11):861-7. doi: 10.1016/j.revmed.2008.02.020. Epub 2008 Apr 10. Rev Med Interne. 2008. PMID: 18406018 French.
Cited by
-
Monogenic Adult-Onset Inborn Errors of Immunity.Front Immunol. 2021 Nov 17;12:753978. doi: 10.3389/fimmu.2021.753978. eCollection 2021. Front Immunol. 2021. PMID: 34867986 Free PMC article. Review.
-
Peripheral-blood b-cell subset disturbances in inflammatory joint diseases induced by Tropheryma whipplei.PLoS One. 2019 Feb 27;14(2):e0211536. doi: 10.1371/journal.pone.0211536. eCollection 2019. PLoS One. 2019. PMID: 30811404 Free PMC article.
-
CD8+ T Cells Require ITK-Mediated TCR Signaling for Migration to the Intestine.Immunohorizons. 2020 Feb 7;4(2):57-71. doi: 10.4049/immunohorizons.1900093. Immunohorizons. 2020. PMID: 32034085 Free PMC article.
-
Cutting Edge: Cooperative interferon regulatory factor network shapes the NK-cell antiviral response.J Immunol. 2025 Jun 1;214(6):1141-1146. doi: 10.1093/jimmun/vkaf041. J Immunol. 2025. PMID: 40180328
-
Cutaneous Granulomatosis Revealing Whipple's Disease: Value of Tropheryma whipplei Polymerase Chain Reaction Assay for the Diagnosis.Pathogens. 2021 Nov 5;10(11):1438. doi: 10.3390/pathogens10111438. Pathogens. 2021. PMID: 34832593 Free PMC article.
References
-
- Afzali B, Grönholm J, Vandrovcova J, O'Brien C, Sun HW, Vanderleyden I, Davis FP, Khoder A, Zhang Y, Hegazy AN, Villarino AV, Palmer IW, Kaufman J, Watts NR, Kazemian M, Kamenyeva O, Keith J, Sayed A, Kasperaviciute D, Mueller M, Hughes JD, Fuss IJ, Sadiyah MF, Montgomery-Recht K, McElwee J, Restifo NP, Strober W, Linterman MA, Wingfield PT, Uhlig HH, Roychoudhuri R, Aitman TJ, Kelleher P, Lenardo MJ, O'Shea JJ, Cooper N, Laurence ADJ. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nature Immunology. 2017;18:813–823. doi: 10.1038/ni.3753. - DOI - PMC - PubMed
-
- Alsina L, Israelsson E, Altman MC, Dang KK, Ghandil P, Israel L, von Bernuth H, Baldwin N, Qin H, Jin Z, Banchereau R, Anguiano E, Ionan A, Abel L, Puel A, Picard C, Pascual V, Casanova JL, Chaussabel D. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nature Immunology. 2014;15:1134–1142. doi: 10.1038/ni.3028. - DOI - PMC - PubMed
-
- Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. The Journal of Experimental Medicine. 2015;212:1371–1379. doi: 10.1084/jem.20142274. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases