Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 14;13(3):e0193746.
doi: 10.1371/journal.pone.0193746. eCollection 2018.

Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking

Affiliations

Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking

Roman Johannes Gertz et al. PLoS One. .

Erratum in

Abstract

Aim: Since cardiovascular magnetic resonance feature-tracking (CMR-FT) has been demonstrated to be of incremental clinical merit we investigated the interchangeability of global left and right ventricular strain parameters between different CMR-FT software solutions.

Material and methods: CMR-cine images of 10 patients without significant reduction in LVEF and RVEF and 10 patients with a significantly impaired systolic function were analyzed using two different types of FT-software (TomTec, Germany; QStrain, Netherlands). Global longitudinal strains (LV GLS, RV GLS), global left ventricular circumferential (GCS) and radial strains (GRS) were assessed. Differences in intra- and inter-observer variability within and between software types based on single and up to three repeated and subsequently averaged measurements were evaluated.

Results: Inter-vendor agreement was highest for GCS followed by LV GLS. GRS and RV GLS showed lower inter-vendor agreement. Variability was consistently higher in healthy volunteers as compared to the patient group. Intra-vendor reproducibility was excellent for GCS, LV GLS and RV GLS, but lower for GRS. The impact of repeated measurements was most pronounced for GRS and RV GLS on an intra-vendor level.

Conclusion: Cardiac pathology has no influence on CMR-FT reproducibility. LV GLS and GCS qualify as the most robust parameters within and between individual software types. Since both parameters can be interchangeably assessed with different software solutions they may enter the clinical arena for optimized diagnostic and prognostic evaluation of cardiovascular morbidity and mortality in various pathologies.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Example of LV circumferential strain assessments at the basal level and corresponding strain curves.
Example of LV circumferential strain assessments at the basal level with TomTec (Panel a) and QStrain (Panel b). Manually contoured epicardial and endocardial borders and respective strain curves (Panel c) are being displayed for both types of software.
Fig 2
Fig 2. Reproducibility for CMR-FT derived global strain parameters at intra- and inter-observer levels.
Inter-vendor agreement for global strain parameters for healthy volunteers and patients with impaired cardiac output based on three averaged measurements (R3). Panel a–d: Bland-Altman plots with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived reproducibility at an intra-observer level are being displayed. Panel e–h: Bland-Altman plots with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived reproducibility at an inter-observer level are being displayed.
Fig 3
Fig 3. Impact of repeated measurements on reproducibility.
Panel a–h. Inter-vendor agreement based on CoV [%] and ICC for one, two and three averaged measurements. CoV [%], coefficient of variation; ICC, intra-class correlation coefficient; LV GLS, global left ventricular longitudinal strain; GCS, global left ventricular circumferential strain; GRS, global left ventricular radial strain; RV GLS, global right ventricular longitudinal strain.

Similar articles

Cited by

References

    1. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J. Novel Speckle-Tracking Radial Strain From Routine Black-and-White Echocardiographic Images to Quantify Dyssynchrony and Predict Response to Cardiac Resynchronization Therapy. Circulation. 2006;113(7):960–8. doi: 10.1161/CIRCULATIONAHA.105.571455 - DOI - PubMed
    1. Russo C, Jin Z, Elkind MS, Rundek T, Homma S, Sacco RL, et al. Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community‐based cohort. European journal of heart failure. 2014;16(12):1301–9. doi: 10.1002/ejhf.154 - DOI - PMC - PubMed
    1. Stanton T, Leano R, Marwick TH. Prediction of All-Cause Mortality From Global Longitudinal Speckle Strain: Comparison With Ejection Fraction and Wall Motion Scoring. Circulation: Cardiovascular Imaging. 2009;2(5):356–64. doi: 10.1161/CIRCIMAGING.109.862334 - DOI - PubMed
    1. Amaki M, Savino J, Ain DL, Sanz J, Pedrizzetti G, Kulkarni H, et al. Diagnostic Concordance of Echocardiography and Cardiac Magnetic Resonance–Based Tissue Tracking for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circulation: Cardiovascular Imaging. 2014;7(5):819–27. - PubMed
    1. Padiyath A, Gribben P, Abraham JR, Li L, Rangamani S, Schuster A, et al. Echocardiography and Cardiac Magnetic Resonance‐Based Feature Tracking in the Assessment of Myocardial Mechanics in Tetralogy of Fallot: An Intermodality Comparison. Echocardiography. 2013;30(2):203–10. doi: 10.1111/echo.12016 - DOI - PubMed

LinkOut - more resources