Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells
- PMID: 29541196
- PMCID: PMC5835901
- DOI: 10.3892/ol.2018.7827
Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells
Abstract
CXC ligand (L)12 is a chemokine implicated in the migration, invasion and metastasis of cancer cells via interaction with its receptors CXC chemokine receptor (CXCR)4 and CXCR7. In the present study, CXCL12-mediated Ca2+ signalling was compared with two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which demonstrate distinct metastatic potential. CXCL12 treatment induced Ca2+ responses in the more metastatic MDA-MB-231 cells but not in the less metastatic MDA-MB-468 cells. Assessment of mRNA levels of CXCL12 receptors and their potential modulators in both cell lines revealed that CXCR4 and CXCR7 levels were increased in MDA-MB-231 cells compared with MDA-MB-468 cells. Cluster of differentiation (CD)24, the negative regulator of CXCL12 responses, demonstrated increased expression in MDA-MB-468 cells compared with MDA-MB-231 cells, and the two cell lines expressed comparable levels of hypoxia-inducible factor (HIF)2α, a CXCR4 regulator. Induction of epithelial-mesenchymal transition (EMT) by epidermal growth factor exhibited opposite effects on CXCR4 mRNA levels compared with hypoxia-induced EMT. Neither EMT inducer exhibited an effect on CXCR7 expression, however hypoxia increased HIF2α expression levels in MDA-MB-468 cells. Analysis of the gene expression profiles of breast tumours revealed that the highest expression levels of CXCR4 and CXCR7 were in the Claudin-Low molecular subtype, which is markedly associated with EMT features.
Keywords: CXC chemokine receptor type 4; CXC chemokine receptor type 7; breast cancer; calcium signalling; cluster of differentiation 24; hypoxia-inducible factor 2α.
Figures
References
-
- Perissinotto E, Cavalloni G, Leone F, Fonsato V, Mitola S, Grignani G, Surrenti N, Sangiolo D, Bussolino F, Piacibello W, Aglietta M. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res. 2005;11:490–497. - PubMed
-
- Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167:4747–4757. doi: 10.4049/jimmunol.167.8.4747. - DOI - PubMed
-
- Mochizuki H, Matsubara A, Teishima J, Mutaguchi K, Yasumoto H, Dahiya R, Usui T, Kamiya K. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: A possible predictor of metastasis. Biochem Biophys Res Commun. 2004;320:656–663. doi: 10.1016/j.bbrc.2004.06.013. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous