Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2018 Apr 1;136(4):409-416.
doi: 10.1001/jamaophthalmol.2018.0376.

Validation of the Colorado Retinopathy of Prematurity Screening Model

Affiliations
Multicenter Study

Validation of the Colorado Retinopathy of Prematurity Screening Model

Emily A McCourt et al. JAMA Ophthalmol. .

Abstract

Importance: The Colorado Retinopathy of Prematurity (CO-ROP) model uses birth weight, gestational age, and weight gain at the first month of life (WG-28) to predict risk of severe retinopathy of prematurity (ROP). In previous validation studies, the model performed very well, predicting virtually all cases of severe ROP and potentially reducing the number of infants who need ROP examinations, warranting validation in a larger, more diverse population.

Objective: To validate the performance of the CO-ROP model in a large multicenter cohort.

Design, setting, participants: This study is a secondary analysis of data from the Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study, a retrospective multicenter cohort study conducted in 29 hospitals in the United States and Canada between January 2006 and June 2012 of 6351 premature infants who received ROP examinations.

Main outcomes and measures: Sensitivity and specificity for severe (early treatment of ROP [ETROP] type 1 or 2) ROP, and reduction in infants receiving examinations. The CO-ROP model was applied to the infants in the G-ROP data set with all 3 data points (infants would have received examinations if they met all 3 criteria: birth weight, <1501 g; gestational age, <30 weeks; and WG-28, <650 g). Infants missing WG-28 information were included in a secondary analysis in which WG-28 was considered fewer than 650 g.

Results: Of 7438 infants in the G-ROP study, 3575 (48.1%) were girls, and maternal race/ethnicity was 2310 (31.1%) African American, 3615 (48.6%) white, 233 (3.1%) Asian, 40 (0.52%) American Indian/Alaskan Native, and 93 (1.3%) Pacific Islander. In the study cohort, 747 infants (11.8%) had type 1 or 2 ROP, 2068 (32.6%) had lower-grade ROP, and 3536 (55.6%) had no ROP. The CO-ROP model had a sensitivity of 96.9% (95% CI, 95.4%-97.9%) and a specificity of 40.9% (95% CI, 39.3%-42.5%). It missed 23 (3.1%) infants who developed severe ROP. The CO-ROP model would have reduced the number of infants who received examinations by 26.1% (95% CI, 25.0%-27.2%).

Conclusions and relevance: The CO-ROP model demonstrated high but not 100% sensitivity for severe ROP and missed infants who might require treatment in this large validation cohort. The model requires all 3 criteria to be met to signal a need for examinations, but some infants with a birth weight or gestational age above the thresholds developed severe ROP. Most of these infants who were not detected by the CO-ROP model had obvious deviation in expected weight trajectories or nonphysiologic weight gain. These findings suggest that the CO-ROP model needs to be revised before considering implementation into clinical practice.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Ying reports receiving personal fees from Chengdu Kanghong Biotech co Ltd and Ziemer Ophthalmic Systems AG. No other disclosures are reported.

Comment in

Similar articles

Cited by

References

    1. Kong L, Fry M, Al-Samarraie M, Gilbert C, Steinkuller PG. An update on progress and the changing epidemiology of causes of childhood blindness worldwide. J AAPOS. 2012;16(6):501-507. - PubMed
    1. Palmer EA, Flynn JT, Hardy RJ, et al. ; The Cryotherapy for Retinopathy of Prematurity Cooperative Group . Incidence and early course of retinopathy of prematurity. Ophthalmology. 1991;98(11):1628-1640. - PubMed
    1. Good WV; Early Treatment for Retinopathy of Prematurity Cooperative Group . Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc. 2004;102:233-248. - PMC - PubMed
    1. Fierson WM; American Academy of Pediatrics Section on Ophthalmology; American Academy of Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus; American Association of Certified Orthoptists . Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2013;131(1):189-195. - PubMed
    1. Binenbaum G, Ying G-S, Quinn GE, et al. . The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model. Arch Ophthalmol. 2012;130(12):1560-1565. - PubMed

Publication types