Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air
- PMID: 29547276
- PMCID: PMC5927363
- DOI: 10.1021/jacs.8b01886
Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air
Abstract
A mild and operationally simple copper-catalyzed vinylogous aerobic oxidation of β,γ- and α,β-unsaturated esters is described. This method features good yields, broad substrate scope, excellent chemo- and regioselectivity, and good functional group tolerance. This method is additionally capable of oxidizing β,γ- and α,β-unsaturated aldehydes, ketones, amides, nitriles, and sulfones. Furthermore, the present catalytic system is suitable for bisvinylogous and trisvinylogous oxidation. Tetramethylguanidine (TMG) was found to be crucial in its role as a base, but we also speculate that it serves as a ligand to copper(II) triflate to produce the active copper(II) catalyst. Mechanistic experiments conducted suggest a plausible reaction pathway via an allylcopper(II) species. Finally, the breadth of scope and power of this methodology are demonstrated through its application to complex natural product substrates.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB. Chem Rev. 2006;106:2943–2989. - PubMed
- Piera J, Bäckvall J-E. Angew Chem, Int Ed. 2008;47:3506–3523. - PubMed
- Cavani F, Teles JH. ChemSusChem. 2009;2:508–534. - PubMed
- Bäckvall J-E. Modern Oxidation Methods. 2nd. Wiley-VCH; Weinheim, Germany: 2011.
- Gunasekaran N. Adv Synth Catal. 2015;357:1990–2010.
-
- Stahl SS. Science. 2005;309:1824–1826. - PubMed
-
-
For some recent papers on O2 activation by transition metals, see:
- Garcia-Bosch I, Company A, Frisch JR, Torrent-Sucarrat M, Cardellach M, Gamba I, Güell M, Casella L, Que L, Ribas X, Luis JM, Costas M. Angew Chem, Int Ed. 2010;49:2406–2409. - PMC - PubMed
- Long R, Mao K, Ye X, Yan W, Huang Y, Wang J, Fu Y, Wang X, Wu X, Xie Y, Xiong Y. J Am Chem Soc. 2013;135:3200–3207. - PubMed
- Long R, Mao K, Gong M, Zhou S, Hu J, Zhi M, You Y, Bai S, Jiang J, Zhang Q, Wu X, Xiong Y. Angew Chem, Int Ed. 2014;53:3205–3209. - PubMed
- Liang YF, Jiao N. Acc Chem Res. 2017;50:1640–1653. - PubMed
-
-
- Foote CS, Valentine JS, Greenberg A, Liebman JF, editors. Active Oxygen in Chemistry. Blackie Academic & Professional; London: 1995.
-
-
For some recent reviews of transition-metal-catalyzed aerobic oxidation:
- Stahl SS. Angew Chem, Int Ed. 2004;43:3400–3420. - PubMed
- Punniyamurthy T, Velusamy S, Iqbal J. Chem Rev. 2005;105:2329–2363. - PubMed
- Sigman MS, Jensen DR. Acc Chem Res. 2006;39:221–229. - PubMed
- Boisvert L, Goldberg KI. Acc Chem Res. 2012;45:899–910. - PubMed
- Wu W, Jiang H. Acc Chem Res. 2012;45:1736–1748. - PubMed
- Shi Z, Zhang C, Tang C, Jiao N. Chem Soc Rev. 2012;41:3381–3430. - PubMed
- Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke W-D, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S-F, Plietker B, Laschat S. ChemCatChem. 2013;5:82–112.
- Wang D, Weinstein AB, White PB, Stahl SS. Chem Rev. 2018;118:2636–2679. - PubMed
-
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
