Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 10;145(7):dev143107.
doi: 10.1242/dev.143107.

Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1

Affiliations

Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1

Hyeyoon Lee et al. Development. .

Abstract

Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt signaling essential for embryogenesis and homeostasis. However, whether the antagonism of Wnt signaling that is necessary for vertebrate head formation can be achieved through regulation of Dsh protein stability is unclear. Here, we show that membrane-associated RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes Wnt signaling by regulating the turnover of Dsh protein via ubiquitin-mediated lysosomal degradation in the prospective head region of Xenopus We further found that March2 acquires regional and functional specificities for head formation from the Dsh-interacting protein Dapper1 (Dpr1). Dpr1 stabilizes the interaction between March2 and Dsh in order to mediate ubiquitylation and the subsequent degradation of Dsh protein only in the dorso-animal region of Xenopus embryo. These results suggest that March2 restricts cytosolic pools of Dsh protein and reduces the need for Wnt signaling in precise vertebrate head development.

Keywords: Dapper1; Dishevelled; Head formation; March2; Wnt signaling; Xenopus.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

Publication types

MeSH terms

LinkOut - more resources