Archimedes' law explains penetration of solids into granular media
- PMID: 29549250
- PMCID: PMC5856792
- DOI: 10.1038/s41467-018-03344-3
Archimedes' law explains penetration of solids into granular media
Abstract
Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Nagel SR. Experimental soft-matter science. Rev. Mod. Phys. 2017;89:025002. doi: 10.1103/RevModPhys.89.025002. - DOI
-
- Collins AL, et al. The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand. Int. J. Impact Eng. 2011;38:951–963. doi: 10.1016/j.ijimpeng.2011.08.002. - DOI
-
- Aguilar, J. & Goldman, D. I. Robophysical study of jumping dynamics on granular media. Nat. Phys. 12, 278–283 (2016).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
