Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer
- PMID: 29549977
- PMCID: PMC6139080
- DOI: 10.1016/j.molimm.2018.01.014
Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Keywords: Antigen presentation; Cytokine; Dendritic cell; Molecular regulation; STAT; Tumor.
Copyright © 2018 Elsevier Ltd. All rights reserved.
Conflict of interest statement
The authors declare no competing financial interests. None of the authors affiliated with this manuscript have any commercial or associations that might pose a conflict interest.
Figures



References
-
- Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–680. - PubMed
-
- Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, Lew AM, Shortman K, Heath WR, Carbone FR. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–162. - PubMed
-
- Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6:1755–1766. - PubMed
-
- Anderson KL, Perkin H, Surh CD, Venturini S, Maki RA, Torbett BE. Transcription factor PU. 1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J Immunol. 2000;164:1855–1861. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials