Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 19;13(3):e0191147.
doi: 10.1371/journal.pone.0191147. eCollection 2018.

Protective effect of 3-hydroxybutyrate against endoplasmic reticulum stress-associated vascular endothelial cell damage induced by low glucose exposure

Affiliations

Protective effect of 3-hydroxybutyrate against endoplasmic reticulum stress-associated vascular endothelial cell damage induced by low glucose exposure

Eri Soejima et al. PLoS One. .

Abstract

Aims/hypothesis: The aim of this study was to elucidate the mechanism by which severe hypoglycemia accelerates vascular complications. Furthermore, we assessed the possible protective effect of ketone bodies against the endothelial cell damage caused by glucose deficiency.

Methods: Human umbilical vein endothelial cells (HUVECs) were cultured at a glucose level of either 0.56 or 5.6 mmol/L with or without 3-hydroxybutyrate (3-HB) supplementation. Cell viability was assessed with a CCK-8 assay and a lactate dehydrogenase (LDH) release assay. The activity of caspases was measured using fluorogenic substrates. The expression of genes associated with endothelial cell function and endoplasmic reticulum (ER) stress was evaluated by real-time quantitative PCR. Protein levels of ER stress-related molecules were assessed by Western blotting.

Results: Culture of HUVECs in low-glucose medium for 24 or 48 h resulted in reduction of cell viability accompanied by activation of caspase-3/7 and caspase-8. The addition of a pan caspase inhibitor attenuated the cell death. After incubation in the low-glucose medium, we found reduced mRNA and protein levels of endothelial nitric oxide synthase. ER stress responses mediated by phosphorylation of protein kinase RNA-like ER kinase (PERK) and cleavage of activating transcription factor 6 (ATF6) were augmented, but X-box binding protein 1 (Xbp1) splicing was reduced. Most of these responses to glucose deficiency were significantly attenuated by supplementation with 3-HB.

Conclusions/interpretation: These observations showed that exposure to low glucose induces ER stress, caspase activation, endothelial cell dysfunction and cell death. The beneficial effects of 3-HB shown in this study suggest that hypoketonemic severe hypoglycemia induced by insulin injections or insulin secretagogue administration may be more harmful than hyperketonemic severe hypoglycemia.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Effects of low-glucose exposure on cell viability and protective effects of 3-hydroxybutyrate (3-HB).
Human umbilical vein endothelial cells (HUVECs) were treated with 5.6 or 0.56 mmol/L glucose in the presence of various concentrations of 3-HB (0, 1, 4, 10 mmol/L) for 24 h (A) or 48 h (B). Cell viability was assessed by a CCK-8 assay (A) (B) and an LDH (C) assay. Microscopic images of HUVECs treated for 24 h (D-F). Means and SD, *P<0.05, **P<0.01, ***P<0.001 (n = 4).
Fig 2
Fig 2. Caspase activation by low glucose and suppressive effect of 3-hydroxybutyrate (3-HB).
Caspase-3/7 (A) and caspase-8 (B) activities were measured in HUVECs cultured in low-glucose medium with or without supplementation of 3-HB for 48 h. Results are exppressed as fold increase from control. Means and SD, *P<0.05, **P<0.01, ***P<0.001 (n = 4). Cell nuclei were visualized by Hoechst 33342 staining (blue) (C-G), and caspase-3/7-positive cells were stained green with a fluorogenic substrate (H-L). Bar, 100μm.
Fig 3
Fig 3. Protective effect of a pan caspase inhibitor on HUVECs exposed to low glucose.
HUVECs were treated with 5.6 or 0.56 mmol/L glucose with or without 10 μmol/L zVAD-fmk for 24 h. Cell viability was assessed by the CCK-8 assay (A) and the LDH release assay (B). Means and SD, *P<0.05, **P<0.01, ***P<0.001 (n = 4).
Fig 4
Fig 4. Effect of glucose deprivation on endothelial nitric oxide synthase (eNOS).
HUVECs were treated with 5.6 or 0.56 mmol/L glucose in the presence of various concentrations of 3-hydroxybutyrate (3-HB) for 24 h. mRNA (A) and protein levels (B) of eNOS were assessed by real-time PCR and Western blotting, respectively. A representative image of Western blotting is shown (C). Means and SD, *P<0.05, **P<0.01, ***P<0.001.
Fig 5
Fig 5. Effects of 3-hydroxybutyrate (3-HB) on the endoplasmic reticulum (ER) stress markers.
Expression of ER stress marker genes, Eif2ak3/Perk (A), Ddit3 (B), Ppp1r15a (C), Atf6 (D), Hsppa5 (E), Ire1 (F), XBP1u (G) and XBP1s (H) were assessed in HUVECs treated with 5.6 or 0.56 mmol/L glucose in the presence of various concentrations of 3-HB for 6 h. Means and SD, *P<0.05, **P<0.01, ***P<0.001 (n = 4).
Fig 6
Fig 6. Western blot analysis of ER stress markers.
Protein levels of PERK (A), cleaved ATF6 (cATF6) (B), CHOP (C) and Bip/GRP78 (D) were assessed in HUVECs treated with 5.6 or 0.56 mmol/L glucose in the presence of various concentrations of 3-hydroxybutyrate (3-HB) for 24 h. β-actin was used as a loading control. Representative images of Western blotting are shown. Means and SD, *P<0.05, **P<0.01, ***P<0.001 (n = 3).

Similar articles

Cited by

References

    1. Goto A, Arah OA, Goto M, Terauchi Y, Noda M. Severe hypoglycaemia and ardiovascular disease: systematic review and meta-analysis with bias analysis. BMJ. 2013;347: f4533 doi: 10.1136/bmj.f4533 - DOI - PubMed
    1. Hutton RA, Mikhailidis D, Dormandy KM, Ginsburg J. Platelet aggregation studies during transient hypoglycaemia. J Clin Pathol. 1979;32: 434–8. - PMC - PubMed
    1. Wright RJ, Frier BM. Vascular disease and diabetes: is hypoglycaemia an aggravating factor? Diabetes Metab Res Rev. 2008;24: 353–63. doi: 10.1002/dmrr.865 - DOI - PubMed
    1. Cryer PE. The barrier of hypoglycemia in diabetes. Diabetes 2008;57:3169–76. doi: 10.2337/db08-1084 - DOI - PMC - PubMed
    1. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109: III27–32. doi: 10.1161/01.CIR.0000131515.03336.f8 - DOI - PubMed

MeSH terms