Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch
- PMID: 29554806
- DOI: 10.1021/acs.nanolett.8b00592
Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch
Abstract
Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.
Keywords: DNA nanotechnology; DNA origami; SAXS; conformational changes; small-angle X-ray scattering; time-resolved SAXS.
Similar articles
-
Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.Nano Lett. 2016 Aug 10;16(8):4871-9. doi: 10.1021/acs.nanolett.6b01338. Epub 2016 Jul 27. Nano Lett. 2016. PMID: 27356232
-
Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.Nano Lett. 2016 Jul 13;16(7):4282-7. doi: 10.1021/acs.nanolett.6b01335. Epub 2016 Jun 8. Nano Lett. 2016. PMID: 27184452 Free PMC article.
-
Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.Nano Lett. 2018 Apr 11;18(4):2609-2615. doi: 10.1021/acs.nanolett.8b00412. Epub 2018 Mar 6. Nano Lett. 2018. PMID: 29498287 Free PMC article.
-
Advancing Biophysics Using DNA Origami.Annu Rev Biophys. 2021 May 6;50:469-492. doi: 10.1146/annurev-biophys-110520-125739. Epub 2021 Mar 1. Annu Rev Biophys. 2021. PMID: 33646812 Review.
-
Dynamic Reconfigurable DNA Nanostructures, Networks and Materials.Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202215332. doi: 10.1002/anie.202215332. Epub 2023 Feb 14. Angew Chem Int Ed Engl. 2023. PMID: 36651472 Review.
Cited by
-
Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems.Int J Mol Sci. 2018 Jul 20;19(7):2114. doi: 10.3390/ijms19072114. Int J Mol Sci. 2018. PMID: 30037005 Free PMC article. Review.
-
Multi-micron crisscross structures grown from DNA-origami slats.Nat Nanotechnol. 2023 Mar;18(3):281-289. doi: 10.1038/s41565-022-01283-1. Epub 2022 Dec 21. Nat Nanotechnol. 2023. PMID: 36543881 Free PMC article.
-
Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies.Sci Adv. 2021 Nov 26;7(48):eabj5827. doi: 10.1126/sciadv.abj5827. Epub 2021 Nov 24. Sci Adv. 2021. PMID: 34818037 Free PMC article.
-
Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research.Materials (Basel). 2020 Feb 6;13(3):752. doi: 10.3390/ma13030752. Materials (Basel). 2020. PMID: 32041363 Free PMC article. Review.
-
Revealing Fast Structural Dynamics in pH-Responsive Peptides with Time-Resolved X-ray Scattering.J Phys Chem B. 2019 Mar 7;123(9):2016-2021. doi: 10.1021/acs.jpcb.9b00072. Epub 2019 Feb 27. J Phys Chem B. 2019. PMID: 30763085 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources