Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 19;145(6):dev157339.
doi: 10.1242/dev.157339.

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro

Affiliations

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro

Jérome Chal et al. Development. .

Abstract

Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.

Keywords: Bioengineering; Paraxial mesoderm; Pluripotent stem cells; Presomitic mesoderm; Satellite cell; Skeletal muscle.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe work described in this article is partially covered by patent application PCT/EP2012/066793 (publication number WO2013030243 A1). O.P., J.C. and M.K. are co-founders and shareholders of Anagenesis Biotechnologies, a start-up company specializing in the production of muscle cells in vitro for cell therapy and drug screening.

Publication types

MeSH terms

Substances