Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 1;6(2):1004-1010.
doi: 10.1039/c4sc03046j. Epub 2014 Nov 11.

Large, heterometallic coordination cages based on ditopic metallo-ligands with 3-pyridyl donor groups

Affiliations

Large, heterometallic coordination cages based on ditopic metallo-ligands with 3-pyridyl donor groups

Matthew D Wise et al. Chem Sci. .

Abstract

Ditopic N-donor ligands with terminal 4-pyridyl groups are omnipresent in coordination-based self-assembly. The utilization of ligands with 3-pyridyl donor groups is significantly less common, because the intrinsic conformational flexibility of these ligands tends to favor the formation of small aggregates. Here, we show that large Pd6L1212+ cages can be obtained by reaction of Pd(ii) salts with metallo-ligands L bearing terminal 3-pyridyl groups. The easy-to-access metallo-ligands contain an Fe(ii) clathrochelate core. These sterically demanding clathrochelate complexes prevent the formation of smaller aggregates, which is observed for less bulky analogous building blocks. The cages were shown to bind BF4- and BPh4- anions in aqueous solvent mixtures, whilst the lateral size of the clathrochelate significantly affects their guest encapsulation behavior.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. For ditopic ligands L2 with 3-pyridyl donor groups, the relative orientation of the coordinate vectors is more flexible than for ligands L1 with 4-pyridyl donor groups.
Scheme 2
Scheme 2. Reactions of Pd2+ with ligands of type L2 give di-, tri- and tetranuclear aggregates, whereas large coordination cages are obtained upon reaction with ligands of type L1.
Scheme 3
Scheme 3. Synthesis of the bipyridyl ligands 1 and 2.
Fig. 1
Fig. 1. Molecular structures of clathrochelate-based bipyridyl ligands 1 (left) and 2 (right) as determined by X-ray crystallography. Color coding: C: gray, B: green, Fe: orange, N: blue, O: red. Hydrogen atoms and solvent molecules are omitted for clarity.
Scheme 4
Scheme 4. Synthesis of the cages 3–6.
Fig. 2
Fig. 2. Molecular structure of cages 5 (top) and 6 (bottom) determined by X-ray crystallography. Color coding: C: gray, B: green, Fe: orange, N: blue, O: red, Pd: cyan. Anions and hydrogen atoms are omitted for clarity.
Fig. 3
Fig. 3. Part of the X-ray crystal structure of 7, highlighting the encapsulated BF4 (yellow-green) and BPh4 (magenta) anions. External anions, hydrogen atoms and solvent molecules are omitted for clarity.

References

    1. For selected recent review articles about molecularly defined assemblies see:

    2. Mukherjee S., Mukherjee P. S. Chem. Commun. 2014;50:2239. - PubMed
    3. Ward M. D., Raithby P. R. Chem. Soc. Rev. 2013;42:1619. - PubMed
    4. Hardy J. G. Chem. Soc. Rev. 2013;42:7881. - PubMed
    5. Young N. J., Hay B. P. Chem. Commun. 2013;49:1354. - PubMed
    6. Ronson T. K., Zarra S., Black S. P., Nitschke J. R. Chem. Commun. 2013;49:2476. - PubMed
    7. Amouri H., Desmarets C., Moussa J. Chem. Rev. 2012;112:2015. - PubMed
    8. Chakrabarty R., Mukherjee P. S., Stang P. J. Chem. Rev. 2011;111:6810. - PMC - PubMed
    9. Wiester M. J., Ulmann P. A., Mirkin C. A. Angew. Chem., Int. Ed. 2011;50:114. - PubMed
    1. For selected recent review articles about polymeric assemblies see:

    2. Lu W., Wei Z., Gu Z.-Y., Liu T.-F., Park J., Park J., Tina J., Zhang M., Zhang Q., Gentle III T., Bosch M., Zhou H.-C. Chem. Soc. Rev. 2014;43:5561–5593. - PubMed
    3. Guillerm V., Kim D., Eubank J. F., Luebke R., Liu X., Adil K., Lah M. S., Eddaoudi M. Chem. Soc. Rev. 2014;43:6141. - PubMed
    4. Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M. Science. 2013;341:974. - PubMed
    5. Cook T. R., Zheng Y.-R., Stang P. J. Chem. Rev. 2013;113:734. - PMC - PubMed
    6. Xuan W., Zhu C., Liu Y., Cui Y. Chem. Soc. Rev. 2012;41:1677. - PubMed
    7. Adarsh N. N., Dastidar P. Chem. Soc. Rev. 2012;41:3039. - PubMed
    8. Almeida F. A., Klinowski J., Vilela S. M. F., Tomé J. P. C., Cavaleiro J. A. S., Rocha J. Chem. Soc. Rev. 2012;41:1088. - PubMed
    9. Stock N., Biswas S. Chem. Rev. 2012;112:933. - PubMed
    1. Northrop B. H., Chercka D., Stang P. J. Tetrahedron. 2008;64:11495. - PMC - PubMed
    1. Review: Harris K., Fujita D., Fujita M., Chem. Commun., 2013, 49 , 6703 . - PubMed
    1. Selected examples:

    2. Huang S.-L., Lin Y.-J., Hor T. S. A., Jin G.-X. J. Am. Chem. Soc. 2013;135:8125. - PubMed
    3. Fujita D., Suzuki K., Sato S., Yagi-Utsumi M., Yamaguchi Y., Mizuno N., Kumasaka T., Takata M., Noda M., Uchiyama S., Kato K., Fujita M. Nat. Commun. 2012;3:1093. - PubMed
    4. Bunsen J., Iwasa J., Bonakdarzadeh P., Numata E., Rissanen K., Sato S., Fujita M. Angew. Chem., Int. Ed. 2012;51:3161. - PubMed
    5. Sun Q.-F., Murase T., Sato S., Fujita M. Angew. Chem., Int. Ed. 2011;50:10318. - PubMed
    6. Sun Q.-F., Iwasa J., Ogawa D., Ishido Y., Sato S., Ozeki T., Sei Y., Yamaguchi K., Fujita M. Science. 2010;328:1144. - PubMed

LinkOut - more resources