Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;46(sup2):58-74.
doi: 10.1080/21691401.2018.1452020. Epub 2018 Mar 21.

Nano vanadium dioxide films deposited on biomedical titanium: a novel approach for simultaneously enhanced osteogenic and antibacterial effects

Affiliations
Free article

Nano vanadium dioxide films deposited on biomedical titanium: a novel approach for simultaneously enhanced osteogenic and antibacterial effects

Jinxiao Guo et al. Artif Cells Nanomed Biotechnol. 2018.
Free article

Abstract

Vanadium is a trace element in the human body, and vanadium compounds have a promising future in biological and medical applications due to their various biological activities and low toxicity. Herein, a novel pure vanadium dioxide (VO2) nanofilm was deposited on a substrate of biomedical titanium by magnetron sputtering. The antibacterial effect of VO2 against the methicillin-resistant Staphylococcus aureus (MRSA) was validated in vitro and in vivo. Moreover, the biocompatibility of VO2 and its osteogenic effects were systematically illustrated. A possible osteogenic mechanism involving the amelioration of highly reactive oxygen species (ROS) levels were investigated. According to the results of our present and previous studies, the simultaneous antibacterial and osteogenic effects of VO2 are attributed to its differential regulation of ROS levels in rat bone marrow mesenchymal stem cells (rBMSCs) and bacteria. This study is the first to report the simultaneous effects of VO2 on bactericidal and osteogenic activities through its differential modification of ROS activity in eukaryotic (rBMSCs) and prokaryotic (MRSA) cells. The findings in this work may yield a deeper understanding of the biological activities of vanadium compounds while also paving the way for the further investigation and application of VO2 in biological and medical materials.

Keywords: Vanadium dioxide; antibacterial; cell–material interactions; osteogenesis; reactive oxygen species.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms